風邪をひいてる人に、薬aか砂糖の固まりを処方して風邪の進行について調査したところ、以下のようになった。薬aと砂糖は同じ効果であるという仮設について、有意水準5%で検定せよ。
病状 ・ 良くなった ・ 変化なし ・ 悪化した ・ 計
薬a ・ 50 ・ 22 ・ 10 ・82
砂糖 ・ 44 ・ 26 ・ 12 ・82
計 ・ 94 ・ 48 ・ 22 ・164

このQ&Aに関連する最新のQ&A

A 回答 (1件)

同等性の検定を行う前に、古典的な方法でアプローチしてみるのは、いかがでしょうか。

問題を少し変えます。薬aの方が風邪に効くかどうかを有意水準5%で検定します。こうすると分割表の検定のうち、解析モデルとして条件による状態が変化するかどうかを採用し、ノンパラメトリック法による代表値の検定のうち、独立な2標本について利用できるマン・ウイットニーの検定を用いることが出来ます。計算するとU値が3114で、この場合の検定量zは0.816となり、その確率が0.415で、帰無「仮説」は棄却されないという結果になります。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q三つのベクトルa→、b→、c→の間にb→・c→=c→・a→=a→・b→=-1

三つのベクトルa→、b→、c→の間にb→・c→=c→・a→=a→・b→=-1
a→+b→+c→=0→なる関係があるとき、
a→、b→のなす角Θを求めよ。


この問題わかりませんでした。

解らないところは、この題意を読んでいて
b→・c→=c→・a→=a→・b→=-1 (A)
a→+b→+c→=0→  (B)
上の二つの式の意味です。


たぶん、この二つの関係をもちいて、なんとかして、a,bのなす角を求めるとおもうのですが、
それには、内積の公式を利用すると考えましたが。。 (cosΘ=a・b / |a||b|)

a・bの値と
|a||b|の値を題意から、どのように考えて、導き出すかわかりませんでした。。。

どなたか、この問題教えてください>_<
宜しくお願いします!!

Aベストアンサー

a→+b→+c→=0→ から c→=-a→ -b→ として c→ を消去する(最初の式に代入)
b→・(-a→ -b)=(-a→ -b→)・a→=a→・b→=-1
-(b→・a→) -|b→|^2=-|a→|^2 -(b→・a→)=a→・b→=-1
-(b→・a→) -|b→|^2=-|a→|^2 -(b→・a→) より
|b→|=|a→|
-|a→|^2 -(b→・a→)=a→・b→=-1 より
-|a→|^2=2(a→・b→) = -2
よって |b→|=|a→|=√2
a→・b→=|a→||b→|*cosθ=2cosθ= -1
cosθ= -1/2

QA^*・A=A・A^*である三角行列Aが対角なのは何故?

Aが三角行列のときA^*・A=A・A^*ならばAが対角行列になることを分かりやすく説明してください
成分比較で分かるらしいのですが

Aベストアンサー

なんか以前にもこの質問をしていましたね。もうそのときに解決したのだろうと
思っていましたが、よく読んでみるとそうじゃないみたいですね。

基本的に行列のサイズの帰納法で示します。
行列Aがn次の上三角行列で、
(A^*)A=A(A^*) ---[n]
をみたすとします。Aの(i,j)成分をa(i,j)と書くことにします。
すると、等式[n]の(n,n)成分を比較することにより、次の等式を得ます。
ただし、[ ]~は[ ]内の式の複素共役を意味します。

[a(1,n)]~a(1,n)+ … +[a(n-1,n-1)]~a(n-1,n-1)+[a(n,n)]~a(n,n)

=a(n,n)[a(n,n)]~

これより、両辺から[a(n,n)]~a(n,n)をひいて、

[a(1,n)]~a(1,n)+ … +[a(n-1,n-1)]~a(n-1,n-1)=0

を得ます。しかし、これは、

|a(1,n)|^2+ … +|a(n-1,n-1)|^2=0

と書くとわかるように、|a(1,n)|=0、…、|a(n-1,n-1)|=0を導きます。
よって、a(1,n)=0、…、a(n-1,n-1)=0を得ます。
こうして、行列Aは、(n-1)主小行列Bと(n,n)成分cに分解されることが
わかります。

   A=|B0|
     |0c|

ただし、c=a(n,n)。
すると、等式[n]は、(n-1)次の上三角行列Bに関する等式[n-1]を与えます。
ここで、帰納法の仮定を用いると行列Bは対角行列ですので、結局、行列Aも
対角行列になります。n=1のときに成り立つのはあきらかですね。
以上で証明が完了です。

なんか以前にもこの質問をしていましたね。もうそのときに解決したのだろうと
思っていましたが、よく読んでみるとそうじゃないみたいですね。

基本的に行列のサイズの帰納法で示します。
行列Aがn次の上三角行列で、
(A^*)A=A(A^*) ---[n]
をみたすとします。Aの(i,j)成分をa(i,j)と書くことにします。
すると、等式[n]の(n,n)成分を比較することにより、次の等式を得ます。
ただし、[ ]~は[ ]内の式の複素共役を意味します。

[a(1,n)]~a(1,n)+ … +[a(n-1,n-1)]~a(n-1,n-1)+[a(n,n)]~a(n,...続きを読む

Qaベクトル・bベクトル×aベクトル・bベクトル=|aベクトル・bベクト

aベクトル・bベクトル×aベクトル・bベクトル=|aベクトル・bベクトル|^2じゃあないんですか?

例えば aベクトル・aベクトル=|aベクトル|^2じゃないですか?

なので、aベクトル・bベクトル×aベクトル・bベクトル=|aベクトル・bベクトル|^2もしくは
|aベクトル|^2|bベクトル|^2かな?と思ったのですが、解答では

(aベクトル・bベクトル)^2になっていました。絶対値はつかなくていいんですか?

Aベストアンサー

←No.2 補足
ベクトルaとベクトルa(同じもの)が
平行でない場合がありえると
考えているのだとしたら、複素ベクトルどころか、
内積も未だ早過ぎます。
「ベクトル」とは何か、の所まで戻って、
最初の最初から、復習が必要でしょう。

ベクトルa・ベクトルa が |ベクトルa|の2乗
になる理由は、
cos(ベクトルaとベクトルaの成す角) = cos(0)
だからですよ。

QA・B=B・AならばAの固有ベクトルはBの固有ベクトルである

A,Bをそれぞれn次正方行列とする
命題1:
「A・B=B・AのときAの固有ベクトルはBの固有ベクトルである」
これは反証がすぐに得られるので偽である
命題2:
「A・B=B・AでありAの任意の固有値に対する固有ベクトル空間が1次元のときAの固有ベクトルはBの固有ベクトルである」
kony0氏の証明より
vをAの固有ベクトルとしたときaを適当な複素数としてA・v=a・v
一方A・(B・v)=(A・B)・v=B・(A・v)=B・(a・v)=a・(B・v)
従ってB・vはAの固有値aの1次元固有ベクトル空間に含まれるから
適当な複素数bが存在してB・v=b・v

命題1に代わる真の命題があれば証明付きで教えてください

Aベストアンサー

元の表記は、
「二つのエルミート行列が同一のユニタリー変換によって対角化される
ことの必要十分条件は、それらが可換であることである。」
で、質問に沿うように私が書き換えました。

> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルとBの固有ベクトルを共通にとることができる。」
> 意味は
> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルであってBの固有ベクトルであるものが存在する」
> ですか?

このあたり、誤解を招く言い方ですみません。
固有ベクトルは対角化したときのユニタリー行列の列ベクトルに
なっているのですから、同一のユニタリー変換で対角化されると
いうことは、同じ固有ベクトルの(こういう言い方がいいのかどうか)
セットが存在します。こういう意味なのですが、わかりますでしょうか。

> 「Aの固有値の数とAの固有ベクトル空間の次元」と
> 「Bの固有値の数とBの固有ベクトル空間の次元」に対する関わりは
> ないのですか?

A、Bとも、固有値の数はn、固有ベクトル空間の次元もnです。
固有値の数は、縮退(重根がある場合)していても数えています。

> もっと一般的に
> 「A・B=B・AならばλをAの任意の固有値としたときλを
> 固有値とするAの固有ベクトルであってBの固有ベクトルである
> ベクトルが存在する」
> は正しくないですか?

んー、そこは私にはわかりません。

昔、量子力学を勉強したのを復習しつつ書いていますので、
間違いがあるかもしれません。
一応「自身なし」としておきます。

元の表記は、
「二つのエルミート行列が同一のユニタリー変換によって対角化される
ことの必要十分条件は、それらが可換であることである。」
で、質問に沿うように私が書き換えました。

> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルとBの固有ベクトルを共通にとることができる。」
> 意味は
> 「A、Bがエルミート行列で、A・B=B・A(可換)ならば、Aの
> 固有ベクトルであってBの固有ベクトルであるものが存在する」
> ですか?

このあたり、...続きを読む

Q(a+1)(a+2)の計算方法は、 (a+1)(a+2)=a+a+1+2 =2a+3 であっています

(a+1)(a+2)の計算方法は、

(a+1)(a+2)=a+a+1+2
     =2a+3

であっていますか?

Aベストアンサー

式が(a+1)+(a+2)なら、
=a+a+1+2=2a+3で合ってるが、

(a+1)(a+2)なら、(a+1)×(a+2)です。従って
=a*a+1a+2a+1*2
=a二乗+3a+2となります。


人気Q&Aランキング

おすすめ情報