時定数と63%の関係を教えてください。

A 回答 (2件)

時定数とは、変化の中でも、「緩和現象」とよばれる現象に共通の概念で、


時定数だけの時間がたったら、63%緩和した、ということになります。
どうしてこうなるかというと、一般に緩和する量Aの時間変化は、
A=A(0)exp(-t/τ)
τが時定数、tが時間
とあらわされます。
t=τになったとき、
A=A(0)exp(-1)=A(0)*0.37
となりますから、Aが37%残っている、
すなわち、63%が緩和したということになります。
例えば、τ=1分だとすると、1分でAの63%が
なくなったことになります。
    • good
    • 0
この回答へのお礼

参考になりました。ありがとうございました。

お礼日時:2002/01/11 12:38

詳しくはこちらに書いている模様です。

。。

参考URL:http://dasnet02.dokkyomed.ac.jp/ksap/tptimecs.html
    • good
    • 0
この回答へのお礼

大変助かりました。ありがとうございました。

お礼日時:2002/01/11 09:32

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

Q時定数の定義について

よろしくお願いします。

時定数の定義についてですが、一つは過渡現象の目安としての定義で、τ=CRで63.2パーセントの入力電圧に達するまでの時間という定義は理解できます。
悩んでいるのは、微分回路、積分回路、マルチバイブレータなどのタイムチャート(?)などで、入力時の単位波形の幅にτが表示されていることです。時定数はいろいろな定義があるのですか?

Aベストアンサー

微分回路、積分回路、マルチバイブレータなどの回路はRCの時定数で決まる時間軸で動作する回路ですよね。
だから、その応答を表す場合も時定数であるτを単位として表示していると思います。(私でもそうします)
つまり、R,Cの値を変えることで時間を自由に変えられるということも表したいので、τを単位として使っていると思いま。

Q一次遅れ系の制御における時定数Tの求め方

計量士の資格を勉強していると自動制御の問題が出てきました。

単位ステップ応答は1-exp(t/T)である。
一次遅れ系の時定数Tの求め方として2つの方法がある。
一つは、1-exp(-t/T)が63.2%になったとき。
もう一つは、過渡応答曲線の原点での接線が定常値に交わるまでの原点からの時間を求める。
とあります。
ここで質問なのですが、この過渡応答曲線とは、1-exp(-t/T)の曲線のことでしょうか?

また単位インパルス応答はexp(-t/T)です。
これが36.8%になったとき時定数Tを求められることは知っているのですが、
同様に、過渡応答曲線の原点での接線が定常値に交わるまでの
原点からの時間を求めると時定数Tを求められるのでしょうか?

Aベストアンサー

>この過渡応答曲線とは、1-exp(-t/T)の曲線のことでしょうか?
そうです。
t=Tとおくと、このときの振幅v(T)=1-exp(-T/T)=1-exp(-1)≒0.6321
と定常値の振幅1に対して0.6321は63.21%にあたります。

>原点からの時間を求めると時定数Tを求められるのでしょうか?
求められます。

過渡応答曲線v(t)=exp(-t/T)に対して、t=0における接線は
u(t)=1-(t/T)ですので、u(t)=0(定常値)になる時間は
1-(t/T)=0からt=T(時定数)が求められます。
このときの振幅はv(T)=exp(-T/T)=exp(-1)≒0.3679
これは定常値(0)までの振幅1に対して36.79%にあたります。


人気Q&Aランキング