自分で解いてみると2個になったんですが3個のようです
{(1,1),(1,2),(2,2)}と
{(1,1),(2,1),(2,2))は出たのですけど
もうひとつありますか?
{(1,1),(2,2)}だと対称的が入ってしまうので…
誰か教えてください お願いします

A 回答 (2件)

>反射、反対称、推移、対称 が満たされていても半順序関係といえるのですね?


>先の3つだけ満たされている場合が半順序関係ではないのですね?

対称とはおそらく
(1,1)と(2,2)のことを言っておられるのだと思いますが、これは順序関係の公理でいうと反射律が成り立つということを言っているに過ぎません。

とにかく、順序関係は反射・反対称・推移の3つの公理を満たすもの、と定義されているのですから順序の3公理を満たしさえすれば対称的であろうがなかろうがそれは半順序集合です。
おそらく「反対称」という言葉にひきづられて対称的な組があると反対称律と矛盾するような気がするのでしょうが、そんなことはありません。
すべての(「すべての」ということが重要です)要素間に(自分自身も含めて)対称的かつ反対称律を満たすような関係がある場合は、反対称律よりその集合のすべての要素は等しい、いいかえれば1点集合{1}と言うことになります。
もちろん{1}には{(1,1)}という(ただひとつの)半順序関係が成り立ちます。これは「すべての」関係が対称的であるような唯一の半順序集合です。
{(1,1),(2,2)}の場合は1と2の間に関係は定義されませんから、「すべての」要素間に対称的な関係があるわけではないですよね。

というわけでこの問題については対称的等は気にする必要はありません。
    • good
    • 2
この回答へのお礼

そうなんですか,なんかややこしいので困ってました。どうもありがとうございました。

お礼日時:2002/01/15 23:34

3つめのパターンは{(1,1),(2,2)}でOKですよ



>対称的が入ってしまうので…
なにか勘違いしていませんか?
半順序関係というのは要するにその関係が順序の3公理(反射、反対称、推移)を満たせば良いのですから
{(1,1),(2,2)}が3公理を満たしていることをチェックしてみましょう。

反射律は明らかですね。

多分mahiro19さんは反対称性について思い違いをしていると思うので、これについて解説します。
順序関係と言うのは必ずしも対称な関係ではありません。AとBに順序関係があるということをイメージしやすい言葉で置き換えて「AはBより《前》の要素である」(逆にBはAより《後》の要素であるといっても同様です)と言い替えてみましょう。
「AはBより《前》の要素である」という命題が成り立っていたとしても、AとBを入れ換えると命題は必ずしも成り立つとは限りません。ですが

「AはBより《前》の要素であり、かつBはAより《前》の要素である」と言う条件が成りたつならばA=B …(H)

という命題は成り立ってくれないと不便でしょう。反対称律というのはこの命題を公理にしたものです。
そして重要なことは、そもそもAとBの間に順序関係が定義されていない場合にはこの命題Hは無条件で成り立つ、ということです。つまりその場合はA=BだろうがA≠Bだろうが関係ないのです。
それは前提条件である「AはBより《前》の要素であり、かつBはAより《前》の要素である」が偽だからです。「PならばQ」という形の命題は前提(命題P)が偽なら結論(命題Q)の真偽に関わらず命題自体は真です。これは命題論理の基本的な規則です。

というわけで反対称律を満たしていることをいうためには前提が成り立つような組合せについてのみチェックすれば良いのです。
このパターンについて書き下してみると
(1,1)かつ(1,1)ならば1=1
(2,2)かつ(2,2)ならば2=2
の2つをチェックすればよろしい。どちらも明らかに正しいですね。だから反対称律もOK

推移律についても同様に、前提部分の「(A,B)かつ(B,C)」が成り立つ組合せのみチェックすればOKです。これも大丈夫ですね。


***********************************************

質問の回答はここまでですが、ちょっとついでの話を
「どの2つの要素にも(同じ要素同士にも)関係が定義されない」という「関係」を空関係といいます。空関係はもちろん順序関係ではありませんが、反射律・反対称律・推移律のどれも満たさないわけではありません。直感に反するようですが空関係は反対称律・推移律を満たします。その理由は……もうおわかりですね。

も一つついでの話を
n個の集合の上の半順序集合の数はnが大きくなると急速に増えます。n=3で19個,n=4で219個,n=5で4231個,n=6で130023個と急速に増えます。もっともこれは個々の要素を区別する場合です。つまり{(1,1),(1,2),(2,2)}と{(1,1),(2,1),(2,2)}を異なる半順序集合と見なす場合です。個々の要素を区別しない、つまりこの2つを同じ半順序とみなすような場合はもう少し少なくなります。(それでもn=6で318個になります)お時間があればn=3の場合も考えてみて下さい。

この回答への補足

反射、反対称、推移、対称 が満たされていても半順序関係といえるのですね?
先の3つだけ満たされている場合が半順序関係ではないのですね?

補足日時:2002/01/13 02:33
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q最大元と極大元の定義の違いが分かりません

数学の基礎「齋藤正彦著」p22からの抜粋です。

定義
(X,≦)を順序集合,AをXの部分集合とする。
「1) aがAの元でAの全ての元xに対してx≦aが成り立つ時,aをAの最大元といい,maxAと書く,Aの全ての元xに対してa≦xが成り立つ時,aをAの最小元といい,minAと書く。最大元や最小元は存在するとは限らない,あるとすれば一つしかない。
2) aがAの元で,Aのいかなる元xに対してもa<xとならない時,aを極大元という。x<aなるAの元が存在しない時,aを極小元という。極大元や極小元は存在しない事も有るし,沢山存在する事もある」

と定義が紹介されてるのですが最大元と極大元についてのこの文意
"aがAの元でAの全ての元xに対してx≦aが成り立つ"と"aがAの元で,Aのいかなる元xに対してもa<xとならない"
とは同値だと思います。
違いが分かりません。

一体,どのように違うのでしょうか?

Aベストアンサー

>最大元と極大元の定義の違いが分かりません
最大元と極大元は抽象的に考えても違いが分からなくて当然だと思います。ここは具体例で理解するのがよいと思います。

例はいろいろ考えられますが、たとえば、(x,y)∈R^2について、
(x1,y1)≦(x2,y2)をx1≦x2かつy1≦y2と定義します。
A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}
のとき、Aの最大元は存在しませんが、極大元は3個あります。ちなみに最小限は(0,0)の1個ですね。

ところで、最大元が存在する場合は、全順序集合、半順序集合に関係なく、それは極大元でもあります。しかし、その逆は成り立ちません。
その意味で、「同値」ではありませんね。

Q同値関係とは

同値関係について
教科書などを見ると
反射律、対象律、推移律の3つを満たすときに同値関係になるとかいてあるのですが、その意味がよくわかりません。

説明できる方がいらっしゃいましたら教えてください。よろしくお願いします。

Aベストアンサー

関係~について,

 反射律とは a~a を満たすこと
 対称律とは a~b ⇒ b~a を満たすこと
 推移律とは a~b,b~c ⇒ a~c を満たすこと

です。この3つをすべて満たすことを同値関係といい,
高校までに習った「同値」という概念の本質を端的に
言い表しています。

定義なのだから,そのまま認めればいいだけのことですが,
実感がつかみにくいなら,中学・高校で習った具体例を
あげるとよいでしょう。
例えば,線分の長さについて考えると
  AB=AB,
  AB=CD ⇒ CD=AB,
  AB=CD,CD=EF ⇒ AB=EF
が成り立ちますから,「線分の長さが等しい」という関係は
同値関係ですね。

大学の数学って,今まであいまいにしてきたことを,
スッキリさせてくれますよね。

Q反射律・対称律・推移律

お世話になります。数学大嫌い男です。
やや数学っぽい本を見ていたら、反射律・対称律・推移律というのが書いてありました。
しばらくいくと次の問題がありました。

問「対称律と推移律が成り立つとき、対称律によって a~b ならば b~a,したがって推移律によって a~a となって反射律が成り立つという論法は誤りであることを説明せよ」

答「問題の論法は関係のついている元aだけについて a~aを言ったにすぎない」

私にはチンプンカンプンです。
答も何を言っているのかわかりません。
だって本には簡単にしか書いてません。反射律・対称律・推移律の定義を私がよく分かっていないのかな?

どなたか分かる人がいらっしゃいましたら、お教えください。
数学嫌いの私でも分かるように、よろしくお願いいたします。

Aベストアンサー

あぁ, 確かにひっかかりますね....
この問題を理解するためにはもちろん「反射律」, 「対称律」, 「推移律」を理解しなければならないんですが, 根底には「数学における『ならば』の意味」というポイントがひそんでいます.
日常での「A ならば B」という表現では, 「A が成り立たないとき」は考えていません. しかし, 数学における「A ならば B」は, 「A が成り立っているときには B も成り立つ」, つまり「A が成り立っていないときには B が成り立つかどうかに関係なく『A ならば B』は成り立つ」と解釈します. この, 日常と数学における「ならば」の意味の違いをきちんと理解しなければなりません.
さて, その上で「どの要素も (自分自身を含めて) どの要素とも関係を持たない」という関係 (日常用語では「関係」とはいわないけど, 数学ではこれも「関係」とみなします) を考えてみましょう.
まず対称律: 「全ての a, b に対し a~b ならば b~a」について考えます. 今考えている関係では, どの要素に対しても a~b は成り立ちません. このことから「全ての a, b に対し a~b ならば b~a」は成り立ってしまいます. ということは, この関係は対称律を満たします.
次に推移律: 「全ての a, b, c に対し a~b かつ b~c ならば a~c」ですが, これも同じように考えると満たしていることがわかります.
最後に反射律: 「全ての a に対し a~a」ですが, これは明らかに成り立ちません.
結局, 対称律と推移律では「ならば」を使っているのに対し反射律では「ならば」が出てこないことが差異として現れています.

う~ん, わかりづらそうだ.... どこがわからないか書いてもらえれば, 詳しく説明するかもしれません.

あぁ, 確かにひっかかりますね....
この問題を理解するためにはもちろん「反射律」, 「対称律」, 「推移律」を理解しなければならないんですが, 根底には「数学における『ならば』の意味」というポイントがひそんでいます.
日常での「A ならば B」という表現では, 「A が成り立たないとき」は考えていません. しかし, 数学における「A ならば B」は, 「A が成り立っているときには B も成り立つ」, つまり「A が成り立っていないときには B が成り立つかどうかに関係なく『A ならば B』は成り立つ」と解釈します...続きを読む

Q反射律、対称律、推移律の例を挙げたい

反射律、対称律、推移律の下記例を挙げたいのですが、回答は正しいでしょうか。
(1)反射律であり、対称律でなく、推移律でない。
例){(a,a),(b,b),(c,c),(d,d),(a,b)}
(2)対称律であり、反射律でなく、推移律でない。
例){(a,b),(b,a),(c,c),(d,d)}
(3)推移律であり、反射律でなく、対称律でない。
例){(a,b),(b,c),(a,c),(d,d)}

Aベストアンサー

「反射律であり」とかいうのは日本語として変. 「反射的」という.
(2) と (3) はいいけど (1) はダメじゃないか? 推移的な気がするぞ.
(b, c) でも追加してやったら?


人気Q&Aランキング