早速、質問させていただきます。
2+√(5+2i)をXY座標で表すと、どうなりますか?
先ほど友人に複素数平面の問題を聞かれたのですが、
此処が分からなくなってしまい、困っています。
よろしくお願いします。

A 回答 (1件)

ルート1は実数の範囲で考えると1であるが


複素数の範囲で考えると±1なんですよ
だからルート某は複素数の範囲では1つか2つあるのです
通常は2つですけどね
だから答えは推して量るべしです
    • good
    • 0
この回答へのお礼

ありがとうございました。

お礼日時:2002/01/14 07:36

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセルで複素数の表し方

例えばisinθはエクセルでどうやって表せばよいのでしょうか?またその方法はexp(iδ)にも適用できますか?

Aベストアンサー

IMSIN関数が使えます。ただし「ツール」→「アドイン」で分析ツールを組み込む必要があります。以下はEXCELヘルプの内容です。

IMSIN(複素数)
複素数 サインを求める複素数を指定します。
COMPLEX 関数を使用すると、実数係数と虚数係数を指定して、複素数に変換することができます。

後半部分の意味はよく理解できませんが、IMLN(複素数の自然対数を返す)、IMLOG10(複素数の 10 を底とする常用対数を返す)関数も利用可能です。

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Q複素数

複素数について質問させて頂きます。

参考書には、
「複素数zが実数でない場合つまり、虚部が0でないときzは虚数である」という。

というように記載されていました。
私は複素数は常に虚数だと認識していましたがそうでない場合もあるのでしょうか?
複素数zが実数でない場合と記載されていたので複素数が実数の場合もあるのでは
ないかと考えた次第です。

つまり、
z=x+iy
(z:複素数、x,y:実数、i:虚数単位)
において、y=0の場合でもzを複素数と呼ぶのですか?
上記の場合、zは虚数ではないですが複素数とは言えるのでしょうか?

複素数の定義は、
実数x,yと虚数単位iを用いてz=x+iyの形で表すことのできる数です。
(定義にy≠0は特に記載されていませんでした。)

なので、z=x+iyにおいてy=0の場合は複素数とは言わないと考えています。

質問内容を整理しますと、
(1)複素数は常に虚数である
(2)z=x+iyにおいて、y=0のときzは複素数ではない
  複素数の定義にy≠0は必要なのでしょうか?


以上、ご回答よろしくお願い致します。

複素数について質問させて頂きます。

参考書には、
「複素数zが実数でない場合つまり、虚部が0でないときzは虚数である」という。

というように記載されていました。
私は複素数は常に虚数だと認識していましたがそうでない場合もあるのでしょうか?
複素数zが実数でない場合と記載されていたので複素数が実数の場合もあるのでは
ないかと考えた次第です。

つまり、
z=x+iy
(z:複素数、x,y:実数、i:虚数単位)
において、y=0の場合でもzを複素数と呼ぶのですか?
上記の場合、zは虚数ではないですが複素数...続きを読む

Aベストアンサー

>複素数の定義は、
>実数x,yと虚数単位iを用いてz=x+iyの形で表すことのできる数です。
>(定義にy≠0は特に記載されていませんでした。)
>
>なので、z=x+iyにおいてy=0の場合は複素数とは言わないと考えています。

どうしてそういう意味不明なことを?

z=x+iyであって,yについては何も条件がない(yが実数ということ以外)なら
yは実数であればなんでもいいということです
勝手に「yは0ではない」なんてつけてはいけません.

実数は複素数の一部です.
高校でそう習ったでしょう?
教科書にもそう書いてあるでしょう?

「zは複素数」という言及は「zが実数」というのを含みます.
「複素数zが実数ではない」というのが虚部が0ではないという意味です.

ちなみに
>複素数zが実数でない場合つまり、虚部が0でないときzは虚数である

こんな言い方はかなりマイナーです.
教科書や問題集で「虚数単位」という以外に
わざわざ「虚数」っていうことはほとんどないはずです.

Q複素数平面と座標平面の対応について

本などを見ると、P=a+biとP(a,b)は一対一対応をしていると書かれてあるのですが、これについてどのように整理をつければよいのか迷っています。まず、複素数平面上を書くときは軸に「実軸、虚軸」とはっきり書かないといけないのでしょうか。それと、複素数平面上の点Pの横に(a,b)と書いてはだめですよね。絶対にP=a+biの形で添えないとだめですよね。つまりどこまで対応しているのか分からないんです。あくまで複素数平面と座標平面は別個のものだから、答案を書くときにはそれを別々に書かないとだめですよね。

それと、ベクトルとつなげるときには、複素数平面ではなくて座標平面で考えるんだと思うのですが、そうすると、回転のとき以外はすべて座標平面で考えた方がよいのでしょうか。複素数平面の使い方が余りよくわかりません。
よろしくお願いします。

Aベストアンサー

 
  普通の座標平面だと、(a,b) と書くと、普通、aがx軸、bがy軸です。複素平面でも (a,b) と書くと、bの方が複素数だと思いますが、Y軸に「虚数軸」,X軸に「実数軸」と(または、Yが虚数軸、Xが実数軸などと)でも書いておけば、複素数はこの平面で (a,b) で表現できます。わざわざ、(a,bi)とか、(a+bi) と書く必要はありません(書いても構いません。ただ、複素数平面だと断り、どちらが虚数軸か実数軸かを明示すれば、(a,b) は無論、複素数を表現していることは明らかだからです。……ただ、混同が起こるようなら、P(a,bi) と書いた方がいいですし、分かり易くということなら、書いた方がよいでしょう。結局、見る人にとって、どこまで自明か、分かるかのは話だと思います。学校などでは、P(a+bi) と必ず書くのかも知れません。……他の人の回答で、虚数軸とか書かないでも、(a,bi) と書けばよいとありましたが、それもそうで、これは、見る人が分かればそれでよいということの例です。また、上にも書いていますが、分かり易いです)。
 
  複素数平面なのですから、そこでの (a,b) のaは実数、bは虚数というのは前提としてあるからです。(正確に言えば、実数の平面でも、(a,b) というのは、例えば、iヴェクトルとjヴェクトルなどの基底単位ヴェクトルの略表現なのです。しかしそんなことは考えないでしょう。ヴェクトル積などになってくると、三次元の基底単位ヴェクトルi,j,kを使わないとうまく表現できないので使いますが、それでも、三次元座標の点は、(x,y,z) などで表現します。
 
  「ベクトルとつなげるとき」というのが、何かよく分からないのですが、複素平面での原点から延びるヴェクトルというのは、一つの複素数を示しているのです。そのヴェクトルの長さは、実は、その複素数の絶対値になります。複素平面での二つの複素数ヴェクトルの合成というのは、実数部分と虚数部分をそれぞれ独立に合計して、新しい複素数を造っていることになります。
 
  複素数平面というのは、複素数を分かり易く表現しているので、座標平面と同じように扱っていいのです。ただ、ヴェクトルの合成とか回転というのは、「意味」が違って来るということです。複素数平面のヴェクトルは、実際は一つの複素数スカラーで、座標平面のヴェクトルは、スカラーではなく、実際にヴェクトルだということです。意味の違いが分かっていれば、同じように使えます。
 

 
  普通の座標平面だと、(a,b) と書くと、普通、aがx軸、bがy軸です。複素平面でも (a,b) と書くと、bの方が複素数だと思いますが、Y軸に「虚数軸」,X軸に「実数軸」と(または、Yが虚数軸、Xが実数軸などと)でも書いておけば、複素数はこの平面で (a,b) で表現できます。わざわざ、(a,bi)とか、(a+bi) と書く必要はありません(書いても構いません。ただ、複素数平面だと断り、どちらが虚数軸か実数軸かを明示すれば、(a,b) は無論、複素数を表現していることは明らかだからです。……ただ、混同が...続きを読む

Q複素数 実数 集合 濃度

複素数と実数について質問させて頂きます。

実数は有理数と無理数をあわせた数(複素数から虚部を除いた数)
と認識しています。

添付にイメージ図を記載しました。
このイメージ図が間違っているのでしょうか?

集合としては実数より複素数が大きいと思います。
しかし、複素数と実数の濃度は等しいと教えて頂きました。

濃度とは、有限集合でいうところの数だと認識しています。

集合として複素数が大きいのに、複素数と実数の濃度が等しい
事が不思議でなりません・・・
複素数の集合は実数の集合と虚数の集合を合わせたものなのに
なぜ、複素数と実数の数は等しくなるのでしょうか?


以上、ご回答よろしくお願い致します。

Aベストアンサー

Alice_44先生よりも素人っぽい説明をトライしてみます。

連続体濃度で考える前に加算濃度の無限集合を考えます。

最初に、二元数の無限集合が一元数の無限集合と一対一対応することを確認します。
二元数とは二次元座標系の様に、(X,Y)で表すことが出来る数です。
大きさが無限の碁盤の目を想像してください。
縦方向にXを割り当て、横方向にYを割り当てると、無限に大きな碁盤の目で全ての可算無限の二元数が割り当てられることが分かります。
つぎに、自然数Nをもってきて、碁盤の目を斜めに割り当てます。図を書くのが面倒なので言葉で説明すると、

(1,1)=1
(2,1)=2
(2,2)=3
(3,1)=4
(3.2)=5
(3,3)=6
(4,1)=7
 ・・
 ・・
 ・
と割り当てて行けば、すべての升目に自然数Nを一対一で対応させることができます。
したがって、二元数の可算無限の濃度は、自然数と同じ、つまりアレフ0であることが分かります。

連続体濃度でも同じように対角線で対応を考えると、実数Rと複素数X+Yiが一対一対応をすることが分かります。
(数学的にはここの詰めが甘いとこなのですが、イメージはつかみやすいと思います。)
このことから複素数と実数がおなじ濃度アレフ1を持つことが分かります。

連続体濃度の二元数は平面と考えることができます。したがって、上記のことは、直線の中にある点の数と、平面の中にある点の数が同じであるという、摩訶不思議なことを証明しています。
立体空間に中に取れる全ての点(=3元数)と、線分の中に取れるすべての点も一対一対応することが分かります。
まさに無限であることからの違和感がありますが、点を元とする無限集合は、直線でも、平面でも、立体でも、濃度が同じという事です。

ご参考まで。

Alice_44先生よりも素人っぽい説明をトライしてみます。

連続体濃度で考える前に加算濃度の無限集合を考えます。

最初に、二元数の無限集合が一元数の無限集合と一対一対応することを確認します。
二元数とは二次元座標系の様に、(X,Y)で表すことが出来る数です。
大きさが無限の碁盤の目を想像してください。
縦方向にXを割り当て、横方向にYを割り当てると、無限に大きな碁盤の目で全ての可算無限の二元数が割り当てられることが分かります。
つぎに、自然数Nをもってきて、碁盤の目を斜めに割り当てます。図...続きを読む

Q√1+√2+√3+…+√nの漸近展開

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
によると
1+1/2+1/3+…+1/n
=γ+log(n)+(1/2n)-Σ[k=2,∞](k-1)!C(k)/n(n+1)…(n+k-1)
という漸近展開があるそうです。漸近展開とは、簡単に言うと、nが十分に大きい場合の近似式です。

http://en.wikipedia.org/wiki/Stirling%27s_approximation
によると
n!
=√(2πn)*(n/e)^n*e^λ(n)
という漸近展開があるそうです。

ところで、
√1+√2+√3+…+√n
などの漸近展開をご存知の方がいらっしゃれば教えてください。

y=√xのグラフとy=√(x+1)のグラフではさまれた面積と考えることで、
√1+√2+√3+…+√n
=(2/3)n√n+…
となることはわかるのですが、
√1+√2+√3+…+√n
=(2/3)n√n+α√n+…
とさらに精密にしたいとき、αがどういった定数になるのかわかりません。

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
によると
1+1/2+1/3+…+1/n
=γ+log(n)+(1/2n)-Σ[k=2,∞](k-1)!C(k)/n(n+1)…(n+k-1)
という漸近展開があるそうです。漸近展開とは、簡単に言うと、nが十分に大きい場合の近似式です。

http://en.wikipedia.org/wiki/Stirling%27s_approximation
によると
n!
=√(2πn)*(n/e)^n*e^λ(n)
という漸近展開があるそうです。

ところで、
√1+√2+√3+…+√n
などの漸近展開をご存知の方がいらっしゃれば教えてください。

y=√xのグラフとy=√(x+1)のグラ...続きを読む

Aベストアンサー

ちなみに今の場合は定積分からも「α=1/2」が想像できます.
まず
∫[0→1] √x dx = 2/3
の左辺を矩形公式で和に変換すると
(1/n)Σ(k=1→n) √(k/n) = 2/3
となり, 両辺に n^(3/2) を掛けると
√1+√2+√3+…+√n = (2/3)n^(3/2)
になります. ただし矩形公式では区間の幅に比例する誤差があるので, 実際には
(1/n)Σ(k=1→n) √(k/n) = 2/3 + O(1/n)
です (O(1/n) は「1/n に比例する項」というくらいの意味).
ここで, 左辺の積分を今度は台形公式で和に変換すると精度が上がって
(1/n)Σ(k=1→n) (1/2)(√[(k-1)/n]+√(k/n)) = (2/3) + O(1/n^2)
になります. ここで同じように両辺に n^(3/2) を掛けて左辺を整理すると
√1 + √2 + … + √(n-1) + (1/2)√n = (2/3)n^(3/2) + O(n^(-1/2))
となり, 両辺に (1/2)√n を加えることで
√1+√2+√3+…+√n = (2/3)n^(3/2) + (1/2)n^(1/2)
まで持っていけます.
ああ, たぶん a が正なら自然数かどうかに関係なく
Σk^a = [1/(a+1)]n^(a+1) + (1/2)n^a + …
となると思いますよ.

ちなみに今の場合は定積分からも「α=1/2」が想像できます.
まず
∫[0→1] √x dx = 2/3
の左辺を矩形公式で和に変換すると
(1/n)Σ(k=1→n) √(k/n) = 2/3
となり, 両辺に n^(3/2) を掛けると
√1+√2+√3+…+√n = (2/3)n^(3/2)
になります. ただし矩形公式では区間の幅に比例する誤差があるので, 実際には
(1/n)Σ(k=1→n) √(k/n) = 2/3 + O(1/n)
です (O(1/n) は「1/n に比例する項」というくらいの意味).
ここで, 左辺の積分を今度は台形公式で和に変換すると精度が上がって
(1/n)Σ(k=1→n) (1/2)(√[(k-1)/n]+√(k...続きを読む

Q代数学の基本定理と複素数体cより濃度が大きい環?

代数学の基本定理では、複素数を係数に持つ任意の、n次方程式は必ず、n個の複素数の根を持つ、とあります。私は、これは、複素数体cより濃度が大きい体を考えても無駄ということを意味すると思うので、一般に、複素数体cより濃度が大きい環を考えても無駄だと思うのですが、複素数体cより濃度が大きい環はあるのでしょうか?

Aベストアンサー

「複素数から複素数への写像の集合」Fは複素数体Cより濃度が大きいですよね。
Fの元f,gについて、
加法を f+g : z → f(z) + g(z)
乗法を fg : z → f(z)g(z)
と定義しましょう。

この時、零元は 0F : z → 0 、
fのマイナス元は -f : z → -f(z) であり、
交換法則・結合法則は満たします。

また、単位元は 1F : z → 1 、
fの逆元は f ≠ 0Fの時 f^(-1) : z → 1/f(z) であり、
交換法則・結合法則は満たします。

また、分配法則も満たすので、可換体になっていないでしょうか。

Q1/(a+√b+√c+√d+√e)の有理化

分母の有理化について考えています。文字はすべて自然数とします。Zは一般の整数とします。

1/(a+√b)
は分母分子にa-√bをかけることで有理化できます。

1/(a+√b+√c)
は分母分子にa+√b-√cをかけると、分母は「Z+Z√b」型となり、以前に帰着します。

1/(a+√b+√c+√d)
は分母分子にa+√b-√c-√dをかけると、分母は「Z+Z√b+Z√cd」型となり、以前に帰着します。

1/(a+√b+√c+√d+√e)
はどのようにすれば有理化できるのでしょうか?
可能でありましたら、より一般の場合も教えていただけるとありがたいです。

Aベストアンサー

解説しているサイトがありました。

http://blog.livedoor.jp/seven_triton/

上記サイト内の √素数の問題 というとこです。

Q複素数をより高い視点から

私は高校レベルの複素数には飽き足らず、いろいろ複素数について学んでいくうちにもっと専門的なレベルでの複素数について純粋に知りたいと思っています。学参には書いていないような、テイラー展開がどのように複素数と関係するのかなど、高校レベルよりも少し高いくらいのことが知りたいです。そこで大学での専門書の中で、入門書レベルの専門書で何かお勧めの書はごぞんじありませんか?ぜひ教えてください!!

Aベストアンサー

そうですねえ。読みやすさということなら、
志賀浩二「数学が育っていく物語2 解析性 」
はどうでしょう。

専門書とは言えませんが、テイラー展開と複素数の関係(解析性)なんかを、ほんとの専門書で学ぶ前にイメージしたい、っていうには非常によいかと。

Q√(1+√(1+√(1+√(1+...

数列{a_n}をa_(n+1)=√(1+(a_n)) として、初項1とするとき、lim{n→∞}a_nは収束するかという問題なんですが、a_n<a_(n+1)(単調増加)というのはわかるのですが、有界であることの説明がまったく思いつかず、、、
a_n<b_nといったような数列b_nを考えてきょくげんをとろうかなと思ったんですけど思いつかず、、、
ヒントでもいいのでよろしくお願いします

Aベストアンサー

ちゃんとした証明ではなく概略ですが。

a_(n+1)=√(1+(a_n))
a_(n+1)^2 = 1+(a_n)
a_(n+1)^2 - (a_n) = 1
a_(n+1)^2 - a_(n+1) + a_(n+1) - a_n = 1
今、a_n>1 は明らかだから a_(n+1)^2 - a_(n+1) > 0
単調増加より a_(n+1) - a_n > 0
よって、
a_n^2 - a_n < 1
は明らかだから、上限がある。
単調増加で上限があるため、収束する。


人気Q&Aランキング