どうしても分からない問題がありますのでよろしくお願いします。
もちろんどちらか片方でも構いませんので、よろしくお願いします。

行列Aがあって、Aの成分は第一行が[3/4,√6/4,1/4]第二行が[-√6/4,1/2,√6/4]第三行が[1/4,-√6/4,3/4]である。


1、Aの固有値1に対する固有空間Wの大きさ1のベクトルからなる基底を求めよ。

2、三次元ベクトル空間におけるWの直交補空間Vの正規直交基底{v1,v2}を求めよ。

A 回答 (1件)

1.


固有値1に属する固有ベクトルをt(x,y,z)とすると
(tは転置を表す)
 At(x,y,z)=t(x,y,z)
両辺の成分を比較して
 3/4x+√6/4y+1/4z=x
 -√6/4x+1/2y+√6/4z=y                             1/4x-√6/4y+3/4z=z
これを解いて(最後の式は余分)
y=0,z=xより
t(x,y,z)=t(x,0,x)
大きさ1より
t(√2/2,0,√2/2)
2.
Wの直交補空間Vに属するベクトルをt(u,v,w)とすると
t(√2/2,0,√2/2)と直交するから,内積=0より
 w=-u
よってt(u,v,w)=t(u,v,-u)
         =ut(1,0,-1)+vt(0,1,0)
基底はt(1,0,-1)とt(0,1,0) 大きさを1にして
v1=t(√2/2,0,-√2/2)
v2=t(0,1,0)
v1,v2は直交するので答えです 
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qan=Σ[k=1->n](1/√k),bn=Σ[k=1->n](1/√

an=Σ[k=1->n](1/√k),bn=Σ[k=1->n](1/√(2k+1))のとき、
lim[n->∞](bn/an)を求めよ。


次のように考えましたが、行き詰まりました。
  1/√2Σ[k=1->n](1/n)*[1/√{(k+1)/n}]÷ Σ[k=1->n](1/n)*{1/√(k/n)} <(bn/an)<1/√2
左辺の式で、区分求積法から、lim[n->∞]としたとき、分母は2となったのですか。
分子に区分求積法が使える形でないと判断し、行き詰まりました。
1つはこの流れの解法でいいのか。もし、よかったら、このあとの処理はどうなるのか。
よろしくお願いします。

Aベストアンサー

定積分を利用する方法があります。

anを、定積分∫[1,n+1]dx/√x, ∫[0,n]dx/√x で、
bnを、定積分∫[1,n+1]dx/(2x+1), ∫[0,n]dx/(2x+1) で押さえ、

A≦an≦B
C≦bn≦D

とし、A/D≦an/bn≦B/C
これで、n→∞ とすればいい。

Q何故,[g]=[Ψ]1[f][Φ]^-1ではなく[g]=[Ψ]^-1[f][Φ]なの?

[v_1,v_2,…,v_n],[v'_1,v'_2,…,v'_n]を線形空間Vの基底とする。
[w_1,w_2,…,w_m],[w'_1,w'_2,…,w'_m]を線形空間Wの基底とする。

それで図のように

fを基底[v_1,v_2,…,v_n]から基底[w_1,w_2,…,w_m]での線形写像。
gを基底[v'_1,v'_2,…,v'_n]から基底[w'_1,w'_2,…,w'_m]での線形写像。
そしてΦを[v_1,v_2,…,v_n]から[v'_1,v'_2,…,v'_n]への基底変換の写像。
Ψを[w_1,w_2,…,w_m]から[w'_1,w'_2,…,w'_m]への基底変換の写像とすると
gの表現行列を[g]と表す事にすれば
[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]→[w_1,w_2,…,w_m]→[w'_1,w'_2,…,w'_m]と写されるので
[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]はΦ^-1,
[v_1,v_2,…,v_n]→[w_1,w_2,…,w_m]はf,
[w_1,w_2,…,w_m]→[w'_1,w'_2,…,w'_m]はΨで
結局[g]=[Ψ][f][Φ]^-1となると思ったのですがなぜか本には
[g]=[Ψ]^-1[f][Φ]となっています。何処を勘違いしたのでしょうか?

[v_1,v_2,…,v_n],[v'_1,v'_2,…,v'_n]を線形空間Vの基底とする。
[w_1,w_2,…,w_m],[w'_1,w'_2,…,w'_m]を線形空間Wの基底とする。

それで図のように

fを基底[v_1,v_2,…,v_n]から基底[w_1,w_2,…,w_m]での線形写像。
gを基底[v'_1,v'_2,…,v'_n]から基底[w'_1,w'_2,…,w'_m]での線形写像。
そしてΦを[v_1,v_2,…,v_n]から[v'_1,v'_2,…,v'_n]への基底変換の写像。
Ψを[w_1,w_2,…,w_m]から[w'_1,w'_2,…,w'_m]への基底変換の写像とすると
gの表現行列を[g]と表す事にすれば
[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]→...続きを読む

Aベストアンサー

記号を整理しておく。

線形写像T: V→Wを、Vの基底[v1,...,vn]とWの基底[w1,...,wn]で表現した行列を[f]、
同じ線形写像Tを、Vの基底[v'1,...,v'n]とWの基底[w'1,...,w'n]で表現した行列を[g]で表す。
[v1,...,vn]から[v'1,...,v'n]への基底変換の行列を[Φ]とする。
(v'1,...,v'n)=(v1,...,vn)[Φ]

[w1,...,wn]から[w'1,...,w'n]への基底変換の行列を[Ψ]とする。
(w'1,...,w'n)=(w1,...,wn)[Ψ]

Vの元を基底[v1,...,vn]で表現したものを[x]、
同じ元を基底[v1,...,vn]で表現したものを[x']で表すと、(回答#2より)
[x]=[Φ][x']

同様に、Wの元を基底[w1,...,wn]で表現したものを[y]、
同じ元を基底[w1,...,wn]で表現したものを[y']で表すと、
[y]=[Ψ][y']

線形写像Tを基底[v1,...,vn]と基底[w1,...,wn]で表すと、
[y]=[f][x]
同じ線形写像Tを基底[v'1,...,v'n]と基底[w'1,...,w'n]で表すと、
[y']=[g][x']

これらの関係から、
[y']=[Ψ^-1]*[y]=[Ψ^-1]*[f][x]=[Ψ^-1][f][Φ][x']
となり、これを[y']=[g][x']と見比べると、
[g]=[Ψ^-1][f][Φ]
となっていることがわかる。

最初の質問にあった、
>[v'_1,v'_2,…,v'_n]→[v_1,v_2,…,v_n]→[w_1,w_2,…,w_m]→[w'_1,w'_2,…,w'_m]と写されるので
の対応はベクトル間の対応であって、だからこそ、その係数(=成分)の対応はこれとちょうど逆の変換を受けるのである。このことは、
[v][x]=[v'][Φ^-1]*[Φ][x']
[w][y]=[w'][Ψ^-1]*[Ψ][y']
と表してみてもわかる。ベクトルの成分[x']は行列[Φ]によって[x]にうつり、同じく成分[y']は行列[Ψ]によって[y]にうつっている。だから、同一の線形写像が
f:[x]→[y]
g:[x']→[y']
と表現されているなら、[Ψ][g][x']=[f][Φ][x']となっていて、いいかえると、
[x']→[y']の対応は、[x']→[x]→[y]→[y']という対応をたどったときも、一致していなくてはならない。だから、成分で考えたとき、[g]は、[Φ]→[f]→[Ψ^-1]と同一になるのである。つまり[g]=[Ψ^-1][f][Φ]。

あなたのいう[Φ^-1]→[f]→[Ψ]は、基底ベクトルの対応関係であって、成分表示と混同してはいけない。

記号を整理しておく。

線形写像T: V→Wを、Vの基底[v1,...,vn]とWの基底[w1,...,wn]で表現した行列を[f]、
同じ線形写像Tを、Vの基底[v'1,...,v'n]とWの基底[w'1,...,w'n]で表現した行列を[g]で表す。
[v1,...,vn]から[v'1,...,v'n]への基底変換の行列を[Φ]とする。
(v'1,...,v'n)=(v1,...,vn)[Φ]

[w1,...,wn]から[w'1,...,w'n]への基底変換の行列を[Ψ]とする。
(w'1,...,w'n)=(w1,...,wn)[Ψ]

Vの元を基底[v1,...,vn]で表現したものを[x]、
同じ元を基底[v1,...,vn]で表現したものを[x']で表すと、(...続きを読む

Q数列a[n+1]=a[n]/(1+a[n])^2,a[1]=1/2

数列a[n+1]=a[n]/(1+a[n])^2,a[1]=1/2
のとき、
lim[n->∞](a[1]+・・・・+a[n])/n の値を求めよ。
(小問で、1/a[n]>2nは解決済み。)

はさみうちをするのだとは思うのであるが、その前のひと工夫がわからない。
よろしくお願いします。

Aベストアンサー

>はさみうちをするのだとは思うのであるが、その前のひと工夫がわからない。

ひと工夫ってこんなこと?小問の利用?

0<(1/n)Σ[k=1,n]a[n]/n<(1/n)Σ(1/2k)=(1/2n)(∫[1,n]dx/x+1)
これで、n→∞ とすればよい。

Qexp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

フィボナッチ数列F[n]は、
F[1]=1,F[2]=1,F[n+2]=F[n+1]+F[n]
で定義され、リュカ数列L[n]は、
L[1]=1,L[2]=3,L[n+2]=L[n+1]+L[n]
で定義されます。このとき、

exp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

が成り立つそうなのですが、どうしてなのですか?

右辺は、フィボナッチ数列の母関数と似ていてなんとか求められるのですが、左辺をどうして求めていいかわかりません。

なお、式は
http://mathworld.wolfram.com/FibonacciNumber.html
の(68)を参照しました。

Aベストアンサー

↓ここに証明がありますね。
http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf
(2.7 A surprising sum を見てください。)

参考URL:http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf

Q積分値Integrate[Abs[Sin[x]/x], {x, Pi, 2 Pi}]について

mathematicaで

Integrate[Abs[Sin[x]/x], {x, 0, Pi}]
をしたら、
SinIntegral[\[Pi]]
がでました。これはどういうものをあらわしますか?
よめないです。。。教えてください!

できれば、Abs[Sin[x]/x]の0-Pi、Pi-2Pi、・・・積分値の漸化式かI_nを教えていただけたらありがたいです。

Aベストアンサー

>SinIntegral[\[Pi]]
正弦積分関数Si(x)という特殊関数のx=πにおける値になります。
http://www.wolframalpha.com/input/?i=integrate%28sin%28x%29%2Fx%2Cx%2C0%2CPi%29

積分値が Si(π)=1.85193705...
ということです。
なお、x=0~πの積分区間では、sin(x)/x≧0なので絶対値はそのまま
はずれ、単なるsin(x)/xの積分になります。

∫[0,π] abs(sin(x)/x)dx=∫[0,Pi] sin(x)/xdx=Si(π)

x=π~2πの積分区間では、sin(x)/x≦0なので絶対値は、
「- sin(x)/x」の積分になります。
∫[π,2π] abs(sin(x)/x)dx=∫[π,2π] {-sin(x)/x}dx
=Si(π)-Si(2π)=0.433785476...


人気Q&Aランキング

おすすめ情報