yy"+y'^2=1と言う微分方程式を解く。
y'=pと置いて、
y(dp/dy)p+p^2=1・・・・(1)
p^2=qと置くと
(1/2)y(dq/dy)+q=1・・・・(2)
(1)式から(2)式になる過程が分かりません。
この計算過程を教えて下さい。
お願いします。

A 回答 (4件)

>計算すると何か違うのですが。


>(2)式にはならずに次のようになってしまいますが。
>y*q*(dp/dy)+q=1

p^2=qより
dq/dy=(dq/dp)*(dp/dy)=2p*(dp/dy)
dp/dy=(1/2p)*(dq/dy)

の部分はおわかりになりますか?
これ、つまりdp/dy=(1/2p)*(dq/dy) をそのまま(1)に代入すればO.K.ですよ。
dp/dyとdq/dyを読み間違えていませんか?
    • good
    • 0

k345さんの回答で合ってますよ。


どのような計算をすると y*q*(dp/dy)+q=1 となるのかよくわかりませんが、p^2=q の両辺をyで普通に微分するとK345さんのように普通に 
dp/dy=(1/2p)*(dq/dy) が求まるはずですが。

K345さんの回答が2行しかないことから、おそらくtouch_me_8さんは媒介変数の微分である
 dq/dy=(dq/dp)*(dp/dy)=2p*(dp/dy)
のところでつまずいているんじゃないのかな?

実際 dp/dy=(1/2p)*(dq/dy) を(2)式に代入してみましょうか?

y(dp/dy)p+p^2=1・・・・(1)

y*(1/2p)*(dq/dy)*p+q=1

(1/2)y(dq/dy)+q=1 (終)

高校生かな? わたしゃ旧課程だったから今の高校数学は知らないけど旧課程の微分積分の微分方程式のところでやったな。なつかしいっす。

媒介変数のからんだ微分は今の高校生なら数学3の教科書なのかな? 見直してみてください。きっと分かるはずです。では
    • good
    • 0

2階微分方程式のところに書いてありますよ。


以下、「応用解析要論」(田代嘉宏著、森北出版)p.17公式[6.4]より。

f(y",y',y)=0

y'=dy/dx=pとすると、
(d^2/dx^2)y=dp/dx=(dp/dy)*(dy/dx)=p(dp/dy)

f(p(dp/dy),p,y)=0
    • good
    • 0
この回答へのお礼

私の質問の仕方が悪かったのか、私が聞こうとしたことと回答が少しずれているようです。
でも、ご回答、ありがとうございます。

お礼日時:2002/02/04 13:23

p^2=qより


dq/dy=(dq/dp)*(dp/dy)=2p*(dp/dy)
dp/dy=(1/2p)*(dq/dy)

これを(1)に代入すると、
y*(1/2)*(dq/dy)+q=1
すなわち(2)となります。

これでO.K.でしょうか?

この回答への補足

計算すると何か違うのですが。
(2)式にはならずに次のようになってしまいますが。
y*q*(dp/dy)+q=1

補足日時:2002/02/04 13:20
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q微分、積分

高校の数学(数学III)で、先に微分をできる限りのところまで引き上げてから積分に入るのと、微分、積分の両方の基礎をつくってから微分、積分の演習を積むのとではどちらがよいでしょうか????

Aベストアンサー

とりあえずどちらも一通り基礎を作ってから演習を積んだほうがいいでしょう。入試では微分だけを使う問題は少ないと思います。むしろ積分と絡めた融合問題のような形で出題されることが多いです。微分と積分どちらが重要かと聞かれたら自分は積分だと思います。なので早めに積分の問題にも手をつけましょう。ただ積分から始めてはいけませんよ。微分が分かっていないと積分はほとんど理解できないと思います。

Q「(5x+3)^10でx^pとx^(p+1)の係数比が21:20になる時のpの値」と「x+y=1を満たす全x,yに対してax^2+2bxy+by^2

こんにちは。識者の皆様、宜しくお願い致します。

[問1] (5x+3)^10の展開式でx^pとx^(p+1)の係数比が21:20になる時のpの値を求めよ。
[問2]x+y=1を満たす全てのx,yに対して
ax^2+2bxy+by^2+cx+y+2=0が成立するように定数a,b,cの値を定めよ。

[1の解]
(5x+3)^10=10Σk=0[(10-k)Ck 5x^(10-k)3^k]なので
p=10-kの時(k=10-pの時)
p+1=10-kの時(k=9-pの時)より
a:b=pC(10-p) 5^p 3^(10-p):(1+p)C(9-p) 5^(1+p) 3^(9-p)
で 1/(10-p):(1+p)/(2p-8)/(2p-9)=7:4 から
23p^3-199p+218=0
となったのですがこれを解いてもp=6(予想される解)が出ません。
やり方が違うのでしょうか?

[2の解]
与式をx+yという対称式で表せばならないと思います(多分)。
どうすれば対称式で表せるのでしょうか?

Aベストアンサー

 (1)Cをばらして比を簡略化するところで計算間違いがありそうな気がします。その経過をもう少し詳しく書いてもらえませんか?
 (2)a,b,cを求めるにはまず、x+y=1 を満たすすべての(x,y)で成り立つのですから、x+y=1を満たす(x,y)をまず代入してみてはどうでしょうか。候補としては、(1,0)(0,1)(2,-1)など。
 それから計算されたa,b,c でx+y=1を満たすすべてのx,yで成り立つかどうかを確認するという手順でどうでしょうか?

Q実験 積分、微分回路

実験で積分(RC)、微分回路(CR)で組み、その実験結果をレポートにするんですが、そのときの調べることで、
積分・微分回路で、”周波数により波形が変化する理由を考えよ。”というのがよくわからないことと、
微分回路で”積分回路でのRCを入れ替えでなぜ微分になるか?”が理解できてません。

Aベストアンサー

>積分・微分回路で、”周波数により波形が変化する理由を考えよ。”というのがよくわからない

・積分回路、微分回路はCRの値によっても周波数によっても変化します。

・積分回路、微分回路にはコンデンサ(C)が含まれています。

・コンデンサのインピーダンスは周波数により変化します。

・積分回路はRCの直列接続で、出力はCの両端。

・微分回路はCRの直列接続で、出力はRの両端。


>微分回路で”積分回路でのRCを入れ替えでなぜ微分になるか?”が理解できてません。

『RCを入れ替えでなぜ』と言うよりも微分回路と積分回路をはっきり理解すれば良いと思います。

参考URLも見てください。

参考URL:http://www.hobby-elec.org/ckt.htm

Q二次関数 y=ax^2+bx+c を y=a(x-p)^2+q の形にするには?

二次関数 y=2x^2-4x+3 や y=-x^2+3x-1 などを
y=a(x-p)^2+q の形にしたいんですが
参考書に書いてある解説を読んでも理解できません。

y=a(x-p)^2+q の形にしてしまえば、それからグラフを描けるんですが
どうすれば
y=a(x-p)^2+q の形に出来るのか分かりません。

教えてください。
よろしくお願いします。

Aベストアンサー

最初は具体例から考えましょうか。
「y=2x^2-4x+3をy=a(x-p)^2+q の形にせよ」
まず、xの積の形になっている項と、定数項は分けて考えましょう。すなわち、
y=2x^2-4x+3
=(2x^2-4x)+3 (←ただカッコでくくっただけです)
次に、x^2の係数をくくりだしましょう。すなわち、
y=(2x^2-4x)+3
=2(x^2-2x)+3 (←2をくくりだしました)
このあとがミソです。()の中の項、x^2-2xに注目してください。
xの係数、つまり-2を2で割って2乗した値(-2/2)^2=1を足して、引いてください。すると、
x^2-2x=x^2-2x+1-1  …(i)
となりますね。ただ同じ数を足して引いた(結局0)だけです。
しかし、よく見てください。(i)の右辺には、x^2-2x+1がありますね?これは、
x^2-2x+1=(x-1)^2
です!!(ここまでくればできたも同然)よって、
x^2-2x=(x-1)^2-1
となります。あとはこれをyの式に代入してあげましょう。
y=2(x^2-2x)+3
=2{(x-1)^2-1}+3  …(ii)
ここで、目的を再確認しましょう。今目指しているのはy=a(x-p)^2+qの形ですね。となると、(ii)の大カッコの中の-1が邪魔ですね。邪魔なら、出してしまいましょう。すなわち、
y=2{(x-1)^2-1}+3
=2{(x-1)^2}-2+3 (←-1を大カッコから出すときは2をかけるのを忘れずに)
=2{(x-1)^2}+1
これで、y=a(x-p)^2+qの形(a=2,p=1,q=1)になりましたね。

一般に、y=ax^2+bx+c(a≠0)の場合でも、
y=a{x+b/(2a)}^2-(b^2)/(4a)+c
と変形できます。これは上の例を参考にご自分で導出してみましょう!!

最初は具体例から考えましょうか。
「y=2x^2-4x+3をy=a(x-p)^2+q の形にせよ」
まず、xの積の形になっている項と、定数項は分けて考えましょう。すなわち、
y=2x^2-4x+3
=(2x^2-4x)+3 (←ただカッコでくくっただけです)
次に、x^2の係数をくくりだしましょう。すなわち、
y=(2x^2-4x)+3
=2(x^2-2x)+3 (←2をくくりだしました)
このあとがミソです。()の中の項、x^2-2xに注目してください。
xの係数、つまり-2を2で割って2乗した値(-2/2)^2=1を足して、引いてください。すると、
x^2-2x=x^2-2x+1-1 ...続きを読む

Q微分積分について

微分積分初心者です。

dy/dx=5という微分方程式があって、これの両辺をxで積分すると

∫dy/dx・dx=∫5dx
y=5x + C(Cは積分定数)というのはわかるのですが、

dxを右辺に持って行って、
dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで
積分ということになるのでしょうか?
こういうことは可能なのでしょうか?

また一階微分の時は右辺にdxを持っていくことができますが、
二階微分以上ではできないのはなぜでしょうか?

よろしくお願い致します。

Aベストアンサー

>dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで
>積分ということになるのでしょうか?
その通りです。

>こういうことは可能なのでしょうか?
可能です。


>また一階微分の時は右辺にdxを持っていくことができますが、
>二階微分以上ではできないのはなぜでしょうか?

一般的にはできません。
例えば
d^2y/dx^2=f(x)の場合
d^(y^2)=f(x)(dx)^2
∫d(y^2)=∫f(x)(dx)^2
と右辺の(dx)^2での積分は、積分の定義には存在しない(ありえない)からです。

2回に分けて2ステップで積分すれば可能です。
dy/dx=uとおけば
du/dx=f(x)
du=f(x)dx
∫du=∫f(x)dx=g(x)とおく。
u=dy/dx=g(x)
dy=g(x)dx
∫dy=∫g(x)dx
y=∫g(x)dx=∫{ [∫f(t)dt](t=x)}dx ← 任意定数が2つ出て 「c1x+c2の項が出てくる」

あるいは代わる解法として
特性方程式を使う方法や演算子s=d/dx=D を使う方法

を使えば二階微分方程式以上に対応できます。

>dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで
>積分ということになるのでしょうか?
その通りです。

>こういうことは可能なのでしょうか?
可能です。


>また一階微分の時は右辺にdxを持っていくことができますが、
>二階微分以上ではできないのはなぜでしょうか?

一般的にはできません。
例えば
d^2y/dx^2=f(x)の場合
d^(y^2)=f(x)(dx)^2
∫d(y^2)=∫f(x)(dx)^2
と右辺の(dx)^2での積分は、積分の定義には存在しない(ありえない)からです。

2回に分けて2ステップで積分すれば可能です。
dy/d...続きを読む

Qx+yとx^2+y^2がともにpで割り切れるならばx^2+y^2はp^2で割り切れる?

p:素数(但し、pは2ではない)とする。

x,y:自然数
x+yとx^2+y^2がともにpで割り切れるならばx^2+y^2はp^2で割り切れる

という命題を証明したいのですがどうすればいいのでしょうか?

Aベストアンサー

  (x+y)^2 = x^2+y^2+2xy
が一般に成り立ちますから,x+yとx^2+y^2がともに
pで割り切れるならば,2xyはpで割り切れます。
pは2でない素数なので,
  xまたはyはpで割り切れる
ことになり,x+yがpで割り切れることにより,
結局xもyもpで割り切れることになります。
したがって,x^2+y^2はp^2で割り切れます。

証明の本質は,(ユークリッドの)互除法です。

Q微分積分の使い道について

微分積分の使い道について

昔から数学が得意でなくて、微分積分もなんとなくでここまでやってきました。しかし、一応は出来るものの、未だにその存在意義がよくわかりません。一体どういう場面、どういった目的、どういった用途で微分積分は用いられ、役に立っているのでしょうか?

Aベストアンサー

応用のひとつに"制御"があります。

例えば、この時期暑いですよね。冷房で部屋の温度を24度に保つことを考えます。
正確には冷房のパワーを調節して部屋の温度を"制御"することを考えるわけです。
全自動エアコンではないですよ。パワーを0~10の範囲で手動で調節しなければならない冷房器具です。
外はよく晴れて太陽が照りつけていると思ってくださいね。

もし部屋の気温が24度より低ければ、冷房をつければさらに寒くなってしまいますから冷房はつけなくていいですね。
で、気温が24度よりも高ければ、冷房をONすると。
……これだけでは不充分なのです。

これだけではパワーをどれくらいに設定すればいいか分かりませんよね。
室温は25度なのにパワー10で冷房を効かせてすごく寒くなるかもしれません。
それに同じ25度でも外が曇りなのか晴れなのか雨なのかによってパワーは変えていくべきですよね。


そこで現在の気温だけでなく、"気温の変化率"をみると良いのです。
同じ25度でも2時間前からほとんど変化していないならパワーは弱くて良いでしょうし、たったの10分で20度から25度になるくらい急激に気温が上がっているならパワーも強く設定するべきでしょう。
逆に1時間前に30度だった気温が現在25度になったなら、ほっといても室温は下がる。冷房はいらないとなります。

これはつまり、冷房のパワーは現在の気温Tだけで決めるより、現在の気温Tと「Tを微分したT'」を合わせて決める方が確実というわけです。


それだけではありません。
冷房をつけたことによって気温の上昇が緩やかになったなら、涼しくなるまでもう少し時間がかかるものの冷房の設定はいい感じと言えます。
冷房をつけても更に激しく気温が上昇するなら、冷房が真夏の太陽に力負けしていると言うことです。もっとパワーを上げなければいつまで経っても涼しくなりません。
これはそう、"気温の変化率の変化率"を見るということですね。数学的な記号で書けば2次微分係数T''です。


このように室温を制御するならば、普通、"室温"と"室温の変化率"と"室温の変化率の変化率"を見ながら冷房のパワーを調節してやります。
そして今回の例のように"ある物の状態を制御してやるための理論"が"古典制御論"です。

古典制御論では今見たように"微分"を使いますし。制御した結果、室温がちゃんと24度で一定に落ち着くのかを判定するために"ラプラス変換"というテクニックを用います。ラプラス変換するためには、ある関数を"積分"する必要があります。
古典制御論を私たちの暮らしに応用したものが、例えば全自動エアコンなのです。

あなたがエアコンをつけて設定温度を24度にするだけで、部屋の温度が24度で一定になるのも、微分積分のおかげ、そして古典制御論のおかげなんですね。
見えないところで意外に役に立っているものだ。

応用のひとつに"制御"があります。

例えば、この時期暑いですよね。冷房で部屋の温度を24度に保つことを考えます。
正確には冷房のパワーを調節して部屋の温度を"制御"することを考えるわけです。
全自動エアコンではないですよ。パワーを0~10の範囲で手動で調節しなければならない冷房器具です。
外はよく晴れて太陽が照りつけていると思ってくださいね。

もし部屋の気温が24度より低ければ、冷房をつければさらに寒くなってしまいますから冷房はつけなくていいですね。
で、気温が24度よりも高ければ、冷房を...続きを読む

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Q微分・積分の重要性について

いつもお世話になっています、こんばんは。

高校時代、微分・積分を少しだけやりました(文系のため数III・数Cは学習経験なし)が苦手でした。しかし、大学に入ると数学科目はもちろんのこと他の理系科目やミクロ経済学やマクロ経済学などあらゆる分野で微分・積分が多く活用されているように思いました。

質問1:なぜここまで微分・積分は活用されているのでしょうか?
質問2:微分・積分が活用されている分野を大まかに教えてください。
質問3:微分・積分を習得して役に立った経験を教えてください。
質問4:中学数学の基礎をしっかりと習得すれば、微分・積分を理解できますでしょうか?
質問5:Excel等のビジネスソフトでも微分・積分を活用することが可能でしょうか?

お時間ある時にお答えください、よろしくお願いします。

Aベストアンサー

質問1: 連続的(なめらかに繋がっている)であって規則性を持つ物事の多くがこのやり方で扱えるからです。ちょっと標語的に言いますと:微分は、物事全体の中の極めて微小な部分に着目することによって、基本法則を描き出す道具。積分は、基本法則に沿って物事が発展して生じる全体を見通す道具。
質問2: ものの形や変化を扱う分野のほとんどが該当するでしょう。ことにそれらを分析したり予測したり設計したりするのに必須です。分析では、たとえば経済で言う「価格弾力性」なんてのは、微分そのものです。設計では、特に、何かを最適化する(コストを最小にする、強度を最大にするなど)際の計算には欠かせません。微積分は、もともとは力学のためにニュートンが開発した手法ですが、確率論の基礎でもあります。
質問3: 仕事で計算をやるときには、かなりの割合で微積分が入っています。しかし近頃の(大破綻した)ファイナンス理論に出てくるとびきり難しい種類の微積分は、実用の意味で使ったことはありません。
質問4: 大丈夫。最低限を理解するだけなら小学生でも可能です。微積分は算数のような数値を算出する計算とは違って、関数(変数を含む式)を算出する計算なんです。なので、ことに関数の考え方を身につけ、関数のグラフが描けるようになるのが肝要でしょう。
質問5: 表計算ソフトでは微積分はできません。でも、表計算ソフトと微積分の関わり方は2通りあるでしょう。(1)微積分の計算の結果得られた式を入力して、具体的な数値を計算したり、図表化したりする。(2)式が複雑で微積分が簡単には計算できない場合に、数値微分・数値積分(区分求積法)を使って無理矢理計算をする(本物の微積分の代わりにはなりませんが、応用目的によってはこれで足りる)。また、微積分の計算の結果が正しいかどうかチェックするために数値を入れて検算するのに、表計算ソフトをよく使います。

質問1: 連続的(なめらかに繋がっている)であって規則性を持つ物事の多くがこのやり方で扱えるからです。ちょっと標語的に言いますと:微分は、物事全体の中の極めて微小な部分に着目することによって、基本法則を描き出す道具。積分は、基本法則に沿って物事が発展して生じる全体を見通す道具。
質問2: ものの形や変化を扱う分野のほとんどが該当するでしょう。ことにそれらを分析したり予測したり設計したりするのに必須です。分析では、たとえば経済で言う「価格弾力性」なんてのは、微分そのものです。設計...続きを読む

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。


人気Q&Aランキング

おすすめ情報