Σn=1→∞ n/(n+1)! って問題なんですが

lim n→∞ Σ (k+1)-1/(k+1)!

Σk=1→∞ ( 1/k! - 1/(k+1)! ) 

二行目から三行目の変形がわかりません。
差分していると思うのですが、計算が合わないんです、、
けど回答がこうなっているので困っています、、、
だれか教えて下さい。。

A 回答 (1件)

lim n→∞ Σ (k+1)-1/(k+1)!


→ Σk=1→∞ ( 1/k! - 1/(k+1)! )
の変形ですね。
これって、(k+1)-1/(k+1)!
= ((k+1)/(k+1)!)-(1/(k+1)!)
で(k+1)!=1*2*…(k-1)*k*(k+1)なので
第一項の分母の(k+1)が消えてちゃうんじゃないですかね。
あとは、一行から2行が分かるなら大丈夫だと思いますけど。
    • good
    • 0
この回答へのお礼

w(゜o゜)w オォー ありがとございます。。
難しく考えすぎてました。。

お礼日時:2002/02/05 15:09

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q何故lim[n→∞](a_n-1)/(a_n+1)=0⇒lim[n→∞]a_n=1?

識者の皆様おはようございます。

lim[n→∞](a_n-1)/(a_n+1)=0⇒lim[n→∞]a_n=1
を示すのに困っています。
定義に従って書くと仮定は
0<∀ε'∈R,∃m'∈N;m'<k⇒|(a_k-1)/(a_k+1)-0|<ε'…(*)
となり、
これから
0<∀ε∈R,∃m∈N;m<k⇒|a_k-1|<ε…(**)
を導かねばならないのですがなかなか(*)から(**)を導けません。
どのようにして導けますでしょうか?

Aベストアンサー

対偶を使えばいいでしょ。つまり(**)の否定から(*)の否定を導けば良い。

 (**)を略記なしに書くと、
∀ε((ε∈R∧0<ε)⇒∃m(m∈N∧∀k((k∈N∧m<k)⇒|a_k-1|<ε)))
であり、その否定は
∃ε((ε∈R∧0<ε)∧∀m(m∈N⇒∃k((k∈N∧m<k)∧((a_k-1)≧ε∨-(a_k-1)≧ε)))
です。質問者さん流に書けば
0<∃ε∈R,∀m∈N, m<∃k∈N;((a_k-1)≧ε∨-(a_k-1)≧ε)…~(**)
とでもなりますか。すると(*)の否定は
0<∃ε'∈R,∀m∈N, m<∃k∈N;((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')…~(*)
となりましょう。

 で、~(**)⇒~(*)を証明すりゃ良い。まず~(**)だとすると、ε, m, kを固定したとき、
[1] (a_k-1)≧εの場合、(ANo.1の計算を利用すると)
(a_k-1)/(a_k+1) = 1-2/(a_k +1)≧1-2/(2+ε)>0
[2] -(a_k-1)≧εの場合も同様に、
-(a_k-1)/(a_k+1) = -(1-2/(a_k +1))≧2/(2-ε)-1>0
です。
 さてここで、
0<ε'∧((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')
が成り立つようなε'(ただしε'は、m, kに依らずεだけで決まる)の具体例をひとつ構成すれば良いわけです。

対偶を使えばいいでしょ。つまり(**)の否定から(*)の否定を導けば良い。

 (**)を略記なしに書くと、
∀ε((ε∈R∧0<ε)⇒∃m(m∈N∧∀k((k∈N∧m<k)⇒|a_k-1|<ε)))
であり、その否定は
∃ε((ε∈R∧0<ε)∧∀m(m∈N⇒∃k((k∈N∧m<k)∧((a_k-1)≧ε∨-(a_k-1)≧ε)))
です。質問者さん流に書けば
0<∃ε∈R,∀m∈N, m<∃k∈N;((a_k-1)≧ε∨-(a_k-1)≧ε)…~(**)
とでもなりますか。すると(*)の否定は
0<∃ε'∈R,∀m∈N, m<∃k∈N;((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')…~(*)
となりましょう。

 で、~(**)⇒~(*)を証明すりゃ良い。まず~(**)...続きを読む

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

Qlim_[x→∞](1+1/x)^x=e ですが、lim_[x→∞](1+1/(x+1))^(x+1)は?

lim_[x→∞](1+1/x)^x=e ですが、x の代わりに(x+1)にした場合:
lim_[x→∞](1+1/(x+1))^(x+1) どうなりますか?
たぶん e だとは思うのですが。解き方も教えてください。
よろしくお願いします。

Aベストアンサー

>y^(n+1)/y^n や (n+1)y/ny なんかだと+1が生きてきますよね。
そのとおり、+1を無視するわけにいきません。また、先の回答が+1を無視しているわけでもありません。
この問題を少し変えて、
lim_[x→∞](1+1/x)^(x+1)
とすれば、
lim_[x→∞](1+1/x)^(x+1)=lim_[x→∞](1+1/x)^x *(1+1/x)=e
(∵ x→∞ のとき(1+1/x)^x→e ,(1+1/x)→1)

lim_[x→∞](1+1/(x+1))^x
とすれば、y=x+1 とおいて
lim_[x→∞](1+1/(x+1))^x=lim_[y→∞](1+1/y)^(y-1)=lim_[y→∞](1+1/y)^y /(1+1/y)=e
(∵ y→∞ のとき(1+1/y)^y→e ,(1+1/y)→1)

結果は同じeですが、途中で+1を無視せずに解答する必要があるでしょう。


人気Q&Aランキング

おすすめ情報