ジメジメする梅雨のお悩み、一挙解決! >>

グラフなどに使われているP<0.05などと書かれている場合の
「有意差」の言葉の意味が分かりません・・。

統計上偶然とは思えない可能性がある

と辞書に書いているのは何度も読んだのですが
「有意差がある」というのは
違いがあると理解すればいいんですか???

おばかな私に分かりやすい回答をいただければと思います。

このQ&Aに関連する最新のQ&A

A 回答 (10件)

    • good
    • 30

たとえば,100回勝負して,45勝55敗だったとします.



この時,相手は「オレのほうが強い」と言うでしょう.

その時,あなたが「実力が同じでも,偶然でこのくらいのばらつきは出る」と主張したら,相手は,「その偶然は何パーセントだよ?」と言うかもしれません.

それは,計算可能です.

あなたは,その確率が何%なら,相手のほうが強いと納得できますか.

その偶然が5%未満だったら,実力差ありとしようというのが,通り相場になっています.

この時の5%を有意水準と言い,計算した確率が5%を切っていたら,実力に「有意差あり」ということになります.

今はやりのざっくりした説明でした.
    • good
    • 169

統計では、ある二つのデータに差があるかどうかを調べるとき、直接「差がある」ことを立証するのではなく、



(1)二つのデータに差がない(ただの偶然)と仮定する。
(2)それがある低い確率Pでしか起こらない(=偶然とは思えない)ことを示して、(1)の仮定を否定する。

という方法をとります。「有意差がある」とは、(2)が成り立つ、すなわち「差がないとすると、非常にまれな偶然である」ことをいいます。

このとき、確率Pを有意水準といって、0.05=5%や、0.01=1%がよく使われます。

なぜこのような方法をとるのかというと、(1)の仮定が正しいにもかかわらず、これを否定してしまう確率(ただの偶然を差があると間違える確率)が、有意水準Pと等しくなるためです。逆に、(1)の仮定が間違っているにもかかわらず、これを否定しない確率(差があるのに偶然と間違える確率)は、Pより高くなり、また場合によって変動します。

統計的には、ただの偶然を差があると判断してしまうほうが問題になることが多いので、このような方法をとります。
    • good
    • 57

あまり詳しいことを知っているわけではありませんので申し訳ありませんが、私は次のように理解しています。


検定や推定をするときには、有意水準が決められます。
その有意水準に当てはめて、雑な言い方になりますが、
有意水準内にあれば×、信頼区間内にあれば○ と結論が出されます。

このように有意水準を考えて判断をした結果、違いがあると結論づけられたときに、
有意差があるといい、差がないと結論付けたときには、有意差がない、というのではないでしょうか。

すなわち、有意水準の範囲を考慮して考えると差があるといえる、
あるいは差があるとはいえない、ということなのではないでしょうか。.

「有意水準が5%」なら、「95%の確率で差があるといえる」ということでしょうか。
違っていたらごめんなさい。
    • good
    • 26

逆に、「有意さがない」とは、「違い、差がない」のではなくて、「このデータからでは違い、差があるとは結論できない」という意味です。



実際にはまったく差がないかもしれませんし、たとえば・・赤:白=1億:1億+1という微小な差があるかもしれませんし、赤:白=3:2というかなり大きな差が在るかもしれません。
    • good
    • 27

「有意差がある」というのは、「違いがあって、その違いが偶然で起きたものとは考えにくいから、差があるとして扱ってもよかろう」と考えるのがよろしいのでは。

P<0.05というのは、「この違いが偶然で起きたものであるとするなら、そういう偶然が起きる確率Pが0.05より小さい」という意味です。(つまり、結果があくまで偶然に起きたという危険(可能性)が、小なりとはいえ在るわけです。)

具体例をあげましょうか。とある会社が、麦の肥料について新製品を開発し、試験をしているとしましょう。当然、当社従来品と新製品で、収穫量を比較することになります。
帰無仮説(群間に差が無いと言う仮説)とは、この場合、「当社従来品の肥料を与えた場合と、新製品の肥料を与えた場合とで、収穫量に差は無い」という仮説になります。
さて、当社従来品の肥料を与えた場合と、新製品の肥料を与えた場合とで、収穫量を比較したとき、以下の結果になったとします。
小麦、従来品:101,101,97,91,101,91,92,102・・・平均97.0
小麦、新製品:101,92,104,104,96,100,94,95・・・平均98.3

大麦、従来品:104,103,100,101,103,104,101,104・・・平均102.5
大麦、新製品:108,108,108,106,105,108,108,109・・・平均107.5

小麦の場合、「どちらの肥料でも、収穫量に差は無い」場合でも、偶然このような結果になる可能性は多々ありますので、「どちらの肥料でも収穫量に差はあるとはいえない」(つまり、差はあるかもしれないが、同じとして扱ってもよかろう)=「有意差はない」という結論になります。


大麦の場合、「どちらの肥料でも、収穫量に差は無い」場合では、偶然このような結果になる可能性がほとんど無い(P<0.05なら5%以下でしか起き得ない)ので、「肥料間で収穫量に差があるとはいえる」(つまり、明白な差があると思えるので、差があるとして扱ってもよかろう)=「有意差がある」という結論になります。
    • good
    • 33

帰無説(群間に差が無いと言う仮説,統計解析ではこの仮説を立てる)を5%以下で捨てる.ということになります.ここ半世紀,生物から得られる統計学的差は5%で設定されています.つまり20回に1回の間違いは許しましょうと云うことです.もうひとつの考え方は,同じ調査を100回したら同様な結果が95回得られると云うことです.リスクとベネフィットによって有意水準が設定されます.おそらく飛行機の墜落・精密基盤の間違いなどは5%よりきわめて小さいP<0.000001と設定されいてるでしょう.統計の分野によって確率(P)は異なります.有意水準値は何%?という事は以下に示します.


水準のとり方については,5%にするか1%にするかまた0.1%にするか,どう決めるかという問題である.一般的には,前述の0.05, 0.01or0.001とるが,有意水準値を何%に設定するのが望ましいのかは,推計学の問題ではなく,人生観・社会観・自然科学の問題である.たとえ同じ1%水準といっても,それが赤血球数の差が認められるかどうかの場合の危険率と飛行機が墜落する危険率とでは,おのずから異なることが理解できよう.つまり,危険率を何%にするかは,仮説が正しいにも関わらず仮説を捨ててしまうという誤りを犯した時に,こうむる損害の重大さによって決めるべきである.生物統計解析では,有意水準値の境界をここ半世紀のあいだ国際的に5%水準としている.
なぜ生物試験では5%の危険率を採用するのか?
1)統計が育てられた農学の領域では,大学を出て20年くらいは現役で実務に就く.種子を蒔き収穫を調べるという試験では,1年単位である.そこで長い研究生活のうち,1回位の言い過ぎは,人の常として許してよかろう.20回に1回ということで5%の線が認知された.
2)八百長賭博の心理的な研究から,そうはざらにないという基準がおおよそ5%になる.
3)碁でもテニスでもよいが,ほぼ互角と思える相手と何回か勝負し,続けて負けたとする.この時何回続けて負けたら相手の方が強いと認めるだろうか.人の性格にもよるが,3回で認める人は少ないだろう.3回ぐらいなら,互角の相手に続けて負けることが珍しくない.それが4回続けて負けたとなると大抵の人は弱気になるに違いない.更に5回となるとどうであろうか,5回続けて負けたら,互角という帰無仮説を棄却して,相手が強いことを認めるのが常識な判断であろう.相手が互角の時に1回負ける確率は1/2である.5回続けて負ける確率は (1/2)5=0.03, すなわち3%程度である.すなわち,「5回続けて負けたら,相手が強いと認める」という判断基準では,本当は互角なのに相手が強いと判断する確率,第一種の過誤の確率が5%程度はあることになる.
 2回続けて負ける確率は, (1/2)2=25%, 3回続けて負ける確率は, (1/2)3=12.5%,4回続けて負ける確率は, (1/2)4= 6.3%,5回続けて負ける確率は, (1/2)5= 3.2%
となります.
統計解析の結果,P<0.05を優先してはいけません.統計学的にP<0.05の場合でも,調査した人が生物学的に差が無ければ,勇気を持って差が無いと言って下さい.
    • good
    • 15

統計では、ある事柄が偶然発生する確率(有意確率)を求めて


それが偶然起こったのか何らかの必然なのかを結論つけます。
その時の偶然-必然の境目を決めます。その値を有意水準と
言い、それより小さい確率になると有意差がある、有意である
といいます。つまり偶然起こったこととは考えにくい事が
起こってますよと言ってます。

P<0.05とはある事柄が偶然起こる確率が5%未満と言うことです。
(Pはprobabilty=確率の頭文字です)
有意水準を決める時には5%や1%が良く選択されます。

サイコロを5回振って出目が全部1になる確率は0.00013ほどです。
まともなサイコロでも起こりうることですが、どうも怪しい
ですよね。だからまともなサイコロの出目とは有意差があるの
です。偶然起こりうることではなく、イカサマと言う必然が
ありそうですね。

ここで出した確率0.00013はまともなサイコロで1が5連続ででる
確率ですが、同時に『このサイコロはイカサマだ』と決め付けた
時に間違う確率でもあります。そのためこれは危険率とも呼ばれます。
統計では通常5%や1%未満なら間違う確率を断った上で、結論を
つけます。
    • good
    • 10

見た感じで結論を下してはいけないことは沢山あります。


変な例ですが、オリンピックや世界陸上の短距離で決勝に並ぶのは国籍によらずほとんど黒人です。これから、黒人は足が速いと結論できるでしょうか。
ある家族で4人の子供が全員女の子だったとして、この父親からは男子は生まれないと結論して良いでしょうか。
そのとき、確率的にそんな現象が起きるかどうか検証します。有意差というのは、確率的な変動に比べて意味があるほど変動があるか、を調べます。
子供の性別では、生まれる子供の性別の確率は男女1/2と仮定し、4人全員が女性という事象がどれほど起きるか計算します。この場合は確率0.0625ですから、それほど希なことではない(P=0.05というほど希ではない)と結論します。
オリンピックの決勝での黒人選手、これは確率的に起きることかどうかは私にはわかりません。
    • good
    • 5

有意差というのは、違いがある"可能性"があるということです。


あくまで可能性です。断定はできません。

P<0.05は有意水準5%を意味します。有意水準5%とは、5%の"確率"で評価に差があるとは言えない、ということを示します。

確率なので可能性です。
    • good
    • 6

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q回帰関係の有意性と回帰係数の有意性の意味

「回帰関係の有意性」と「回帰係数の有意性」についての質問です。

この2つなんですが、それぞれ何故こんなことをするのでしょうか?
また何がわかるのでしょうか?

式を見たりしてもイマイチ理解ができず、困っています。
簡潔に説明して頂けると大変有り難いです(><;)

よろしくお願いします。

Aベストアンサー

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の影響が強いか、の判断に使えます。総合的なテストをして、国語と数学の点数との重回帰分析をすれば、どちらの能力が有利の判定は、回帰係数の大きいほうが有利、と判断します。

 回帰係数の有意性を利用するような検討は、想定しがたいのですが、間違いありませんか。有意性ではなく、有用性なら、回答は上記です。
 ご質問に忠実に解答すれば、数学と国語の関係の回帰式を日米2カ国で算出、この回帰式が異なること(日米では異なること)を示したい、なんぞの判定は、回帰係数の有意性から判断できます(同じであることは、主張できません)。すなわち、AとBの回帰式は異なる、ことを主張したいときには利用できますが、私の分野では使われた論文を読んだ記憶はありません。
 

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q統計で、有意水準を、0.01あるいは、0.05に決める意味は?

統計で、有意水準を、0.01あるいは、0.05に決める意味が
わかりません。分析する人によって決められると思うのですが、何を基準に
きめればよいのでしょうか?

あと、t検定とは、どんな検定の仕方なのでしょうか?よろしくお願いします。

Aベストアンサー

◇0.05と0.01の使い分けについて

 一般的には 0.05 (危険率5%)を使います。

 理由は、工業製品の場合、多数の集合体から少数をサンプリングして
 カタマリが合格するか?または違いがあるか短時間に判断を
 下す(スクリーニングする)ことが要求されます。 
  また、正確な結果を求めるには、それ相応のデータ数を採る必要
 ありますが、それには時間と労力が掛かります。
 従いまして、費用対効果を念頭におき、危険率を決めます。
 
 大抵の場合、危険率5%の有意差検定にて済みます。
 但し、要求が厳しい場合とか、測定結果の差が大きい場合には
 1%でも検定して結果を記載します。

◇t分布表にて判断する適用範囲;下記条件の場合 t分布を使います。

<< 適用条件 >>
 ロットが異なる2つのサンプル群の標準偏差が未知な場合。
<< 適用範囲 >> 
 1.サンプリングして得られた平均値の差に違いがあるか?判断する場合。
 2.平均値の範囲を推定する(区間推定)場合。

例)ある製品を条件を変えて製造した場合、2つの集合体(カタマリ)
   ができる。そこから各30ケづつサンプリングして平均値を求める。
   この平均値に違いがあるか判断する場合に t分布を使います。

 一般的な工業製品は、全数検査しないうえ、これから作るモノの品質を
 予測しながら保証しければなりません。この場合にはt分布を使うわけです。
 
 一方、サンプル全数を測定して標準偏差が分かっている場合は、
 正規分布表にて有意差検定します。
 つまり、母集団の標準偏差が既知(キチ)の場合、正規分布表を使います。

◇その他
 ご参考まで、既にご存知であろうと思いますが・・・
・0.05 とは危険率 5%という意味で, 確率 5%の割合で間違った
 判断を下す事があるという事です。 
・検定結”判果にて ”有意差が無い”ということは ”同じである"という事
 ではありません。 このデータだけからでは断が下せない”と
 いうだけです。
                       以 上
                  

◇0.05と0.01の使い分けについて

 一般的には 0.05 (危険率5%)を使います。

 理由は、工業製品の場合、多数の集合体から少数をサンプリングして
 カタマリが合格するか?または違いがあるか短時間に判断を
 下す(スクリーニングする)ことが要求されます。 
  また、正確な結果を求めるには、それ相応のデータ数を採る必要
 ありますが、それには時間と労力が掛かります。
 従いまして、費用対効果を念頭におき、危険率を決めます。
 
 大抵の場合、危険率5%の有意差検定にて済みま...続きを読む

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qエクセル2010を使ってデータ分析をしたいのですがどこにあるのかわかり

エクセル2010を使ってデータ分析をしたいのですがどこにあるのかわかりません。 挿入のところでしょうか?データのところでしょうか?
友達にアドインを押して、分析ツールをエクセルに入れるといわれたのですが、アドインがどこにあるのかわからなく…。
教えていただけると助かります。

Aベストアンサー

分析ツールが有効になっていないためです。次の方法でアドインを読み込みましょう。

読み込みが完了しExcelを再起動すると「データ」タブ内に「分析」の項目ができて「データ分析ボタン」が表示され使用可となります。

Excel ヘルプで検索。

[データ分析] コマンドが表示されない場合は、分析ツール アドイン プログラムを読み込む必要があります。

1.[ファイル] タブをクリックし、[オプション] をクリックして、[アドイン] カテゴリをクリックします。
2.[管理] ボックスの一覧の [Excel アドイン] をクリックし、[設定] をクリックします。
3.[有効なアドイン] の一覧の [分析ツール] チェック ボックスをオンにし、[OK] をクリックします。
ヒント [有効なアドイン] の一覧に [分析ツール] が表示されない場合は、[参照] をクリックしてアドイン ファイルを検索します。

分析ツールが現在コンピューターにインストールされていないというメッセージが表示されたら、[はい] をクリックして分析ツールをインストールします。

分析ツールが有効になっていないためです。次の方法でアドインを読み込みましょう。

読み込みが完了しExcelを再起動すると「データ」タブ内に「分析」の項目ができて「データ分析ボタン」が表示され使用可となります。

Excel ヘルプで検索。

[データ分析] コマンドが表示されない場合は、分析ツール アドイン プログラムを読み込む必要があります。

1.[ファイル] タブをクリックし、[オプション] をクリックして、[アドイン] カテゴリをクリックします。
2.[管理] ボックスの一覧の [Excel アドイン] をクリッ...続きを読む

Q統計学のP検定とt検定について教えてください。

よく本を読んでいると出てきますが、なんだかよくわかりません。
HP等を使って検索してるのですが、これだ!という回答は得ることができず、いつも途中でオヤスミモードに突入してしまいます。
如何せん頭の活動がトロイ私にとって、計算式を出されてしまうと即効熟睡モードに入りますのでわかりやすく教えてください。
よろしくお願いいたします。

Aベストアンサー

大学院で研究をする際に道具として統計学を使っている者です.

>質問:統計学のP検定とt検定について教えてください.

P検定……? あまり聞き覚えがない検定名ですが,できましたら正式名称あるいはどのような場合に使用される検定か具体例を示して下さい.とりあえず「t検定」について説明します.

t検定とは正式な定義はともかくとして「t分布を利用した有意性検定」と考えていただくとよいでしょう.……ただしこの説明で分かる人はある程度統計学を勉強した人であって,統計学初心者の人にとっては意味不明かもしれません.
抽象的に考えると分かりづらいので,実際にt検定がどのように使われているかを
具体例を使って説明します.

使用例:男性と女性との体重に差があるか?

  ─────────────────────────────
   女性体重  51 48 51 52 45  平均値: 49.4
  ─────────────────────────────
   男性体重  60 58 58 63 70  平均値: 61.8
  ─────────────────────────────

 上の例では「女性群」「男性群」の体重データ,そしてその平均値が載っています.とある女性5人,とある男性5人に対して体重測定を行ったとします.
 質問その1です.「【この】データにおいて,女性と男性とでは体重の平均値に差があるといえますか?」
 
  男性体重-女性体重=61.8-49.4=12.4

 もし平均値に差がないのであれば「差=0」になるはずですが,「12.4≠0」であり,すなわち,男性と女性の体重には差があると断言できます.
 当たり前すぎて何を言っているんだろう,と思われたかもしれません.

 では質問その2です.「【このデータに限らず一般的に】,女性と男性とでは体重の平均値に差があるといえますか? データから【推測せよ】」
 さあどうでしょう? 「ん.どっかの本で男性の方が体重が重いと書いてあったかな?」といった,データ以外の情報を使わないでください.質問1との違いを区別していない人は「そんなのこのデータで男性>女性になっているから,当然,そうだろ?」と主張してしまいますが,これは誤りです.
 一般的に女性と男性の体重差に違いがあるかどうかを本当に調べるのであれば,この世の中の男性と女性全ての体重データを収集しなければなりません.さらには,そのデータはあくまでも「現在」であって,過去や未来のデータではないので,あらゆる時間のデータも収集する必要があります.……そんなのは絶対無理です!
 そのために,取れる範囲の人数のデータを使うしかありません.そこから「推測」するしかないのです.しかし,あくまでも推測でしかなく,そしてその推測が間違っている可能性もあります.この場合では,例えば「(全体としては本当は差がないのだけど)たまたま体重が軽い女性ばかり選んでしまった.たまたま体重が重い体重の男性を選んでしまった」という可能性もあります.
 このようなことを考えると,データの平均値から【即座に】結論を述べることはできません.これはt検定だけではなく,P検定?,あるいは統計学で使われている「検定」の基本的な考え方です.

 t検定に話を戻しますが,この特定データから推測して「一般的に,男性・女性体重に差があるか」を調べることができます.ちなみに上記データをt検定を行うと……

  t値=-4.79 自由度=8 確率=0.001372037

 という結果になります.この結果の読み取り方もこつがいるのですが,解読の流れとしては,

「【偶然で本当は差がないとして】,今回のような「12.4」という差があるということが発生する確率は「0.14」%である」→
「偶然で起きる確率が1%未満である」→
「それって滅茶苦茶珍しくない?」→
「それは偶然じゃないだろう? というよりは前提の『偶然で本当は差がない』というのがそもそも間違い何じゃないの?」→
「ということは,本当は差があるんだ!」

となって「やっぱり,一般レベルでも男性と女性の体重平均値には差がある」吐血論を下すことができるのです.

このように「t検定」の代表的な使用法としては「二つの平均値に本当に差があるか?」の検討があります(これを使えば,ある数値が本当に「0」よりも大きな数値であるか,なども検討できますが,今回は省略します).

大学院で研究をする際に道具として統計学を使っている者です.

>質問:統計学のP検定とt検定について教えてください.

P検定……? あまり聞き覚えがない検定名ですが,できましたら正式名称あるいはどのような場合に使用される検定か具体例を示して下さい.とりあえず「t検定」について説明します.

t検定とは正式な定義はともかくとして「t分布を利用した有意性検定」と考えていただくとよいでしょう.……ただしこの説明で分かる人はある程度統計学を勉強した人であって,統計学初心者の人にとっ...続きを読む

Qt検定における有意差ありとは?

t検定において、有意差ありという結論になった場合、具体的には、どのような場合のことなのでしょうか?(それぞれのデータが正規分布であることが前提である場合についての話です。)

Aベストアンサー

>具体的には、どのような場合のことなのでしょうか?
このような質問は珍しいので、意味を取り違えているかもしれませんが、
 
 t検定は、2つのグループの平均値に差があるか、を検定する方法です。
 2つのグループでない場合は、多重比較になります。
 平均値でなく、バラつきだとF検定、比率だとカイ2乗検定が定番です。

 具体例ということですが、これは統計学の本の例題が、具体例になります。
 例えは、Aクラスの男と女の平均値、AクラスとBクラス、あるいは学校AとBなど、比較するのは2つの集団(群という)であれば、何でもOK。
 比較する項目は、数値であればOK(アンケートの、良いが1で悪いをゼロ、というのは正規分布にならないのでダメ)。体重、身長、お年玉、・・・、何でも。
  Aクラスの算数の平均と、Bクラスの国語の比較、でも統計学的には問題ありません。ただ、そんなものを比較しても、社会的に馬鹿にされるだけです。

 私の場合は、薬物を投与した群と、していない群の生存日数などを調べて、その薬物の効果の判定に使っています。
 最近だと、学力テストの結果を公開されれば、どこが一番、なんぞを結論することが可能です。

>具体的には、どのような場合のことなのでしょうか?
このような質問は珍しいので、意味を取り違えているかもしれませんが、
 
 t検定は、2つのグループの平均値に差があるか、を検定する方法です。
 2つのグループでない場合は、多重比較になります。
 平均値でなく、バラつきだとF検定、比率だとカイ2乗検定が定番です。

 具体例ということですが、これは統計学の本の例題が、具体例になります。
 例えは、Aクラスの男と女の平均値、AクラスとBクラス、あるいは学校AとBなど、比較するのは2つの...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報