曲面のベクトル表示 r(u,v)=sinucosvi+sinusinvj+cosuk, 2π≧u≧0, 4≧v≧0
において、v=一定のときr(u,v)は経線の円の軌跡を描くということですが、具体的にどのように考えたら良いでしょうか。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

式の書き方をもうちょっと明確にしないと見にくいですね.



r(u,v)=(sin u) (cos v) i + (sin u) (sin v) j + (cos u) k,
は,半径1の球面を極角 u,方位角 v の極座標で表示したものです.
でも,普通は π≧u≧0, 2π≧v≧0 ですがね.

以上のことを考えればほとんど自明でしょう.

あるいは,x,y 軸を z 軸の周りに適当な角度回転して X,Y 軸にすれば
r = (sin u) i' + (cos u) k
になりますよ.
i' は X 軸方向の単位ベクトルです.
    • good
    • 0
この回答へのお礼

ご回答有難うございました。

お礼日時:2002/02/20 13:30

NobNOVA さん:


> 確か、i=j=kとなるときが球面で、 ...

質問では式が見にくい上に,i,j,k の意味が書かれていませんが,
i,j,k がベクトルでないと,曲面のベクトル表示になりませんね.
ベクトルとして i=j=k では,一方向になってしまいます.
NobNOVA さんの文章は |i| = |j| = |k| となるとき,
と言う意味でしょうか?
曲面のベクトル表示というなら,i,j,k はそれぞれ x,y,z 方向の
単位ベクトルというのが通常の使い方と思います.
    • good
    • 0
この回答へのお礼

ご回答有難うございました。

お礼日時:2002/02/20 13:31

どうでもいいけど、球面じゃなくて楕円面になるのでは?


確か、i=j=kとなるときが球面で、
質問に書かれてあるのは楕円面だと思うのですが……
    • good
    • 0
この回答へのお礼

ご回答有難うございました。

お礼日時:2002/02/20 13:32

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qa+b+2c=4k(a≧0,b≧0,c≧0,k>0

a+b+2c=4k(a≧0,b≧0,c≧0,k>0)
abcの最大値とその時のa,b,cを求めよ。

という問題が分かりません。助けてください。よろしくお願いします。

Aベストアンサー

確かに相加相乗を使いますが、先ほどの式は違います。

n個の正数があるとき、
相加平均はn個の総和をnで割ったもの。
相乗平均はn個の積のn乗根をとったもの。

それに対して常に(相加平均)≧(相乗平均)が成り立ち、等号はn個の正数の値が全て等しいときになります。

今回はa,b,2cと3数があるので、
相加平均は(a+b+2c)/3
相乗平均は(a*b*2c)^(1/3)となり、
(a+b+2c)/3≧(2abc)^(1/3)が成り立ちます。

a+b+2c=4kより、4k/3≧(2abc)^(1/3)となります。
両辺を3乗すると、64k^3/27≧2abcで、abc≦32k^3/27
等号成立時がabcの最大値となるので、a=b=2c、即ちa=b=4k/3,c=2k/3のとき最大値32k^3/27となります。

QVをn次元内積空間とする。線形写像f:V→Vがpositive且つ≧0(∀x∈V)ならtr(f)≧0

内積空間についての命題の証明についてです。

[命題]Vをn次元内積空間とする。
線形写像f:V→Vがpositive且つ<f(x),x>≧0(∀x∈V)ならtr(f)≧0
を示しています。

fがpositiveであるの定義は<f(x),y>=<x,f(y)> (for∀x,y∈V)
tr(f)の定義はfの表現行列Aのトレース

Vの基底を{v_1,v_2,…v_n}とすると
x=Σ[i=1..n]c_iv_i
y=Σ[i=1..n]d_iv_i
(c_i,d_i∈C:複素数体 (i=1,2,…,n))
f(v_j)=Σ[i=1..n]a_ijv_i
と書け,((a_ij)=:Aをfの表現行列という)

<f(x),y>=<f(Σ[i=1..n]c_iv_i),Σ[i=1..n]d_iv_i>
=<Σ[i=1..n]c_if(v_i),Σ[i=1..n]d_iv_i>(∵fは線形写像)

<x,f(y)>=<Σ[i=1..n]c_iv_i,f(Σ[i=1..n]d_iv_i)>
=<Σ[i=1..n]c_iv_i,Σ[i=1..n]d_if(v_i)>(∵fは線形写像)

で仮定より

<Σ[i=1..n]c_if(v_i),Σ[i=1..n]d_iv_i>
=
<Σ[i=1..n]c_iv_i,Σ[i=1..n]d_if(v_i)>

と書ける。。。

からどのようにして証明してけばいいのでしょうか?

内積空間についての命題の証明についてです。

[命題]Vをn次元内積空間とする。
線形写像f:V→Vがpositive且つ<f(x),x>≧0(∀x∈V)ならtr(f)≧0
を示しています。

fがpositiveであるの定義は<f(x),y>=<x,f(y)> (for∀x,y∈V)
tr(f)の定義はfの表現行列Aのトレース

Vの基底を{v_1,v_2,…v_n}とすると
x=Σ[i=1..n]c_iv_i
y=Σ[i=1..n]d_iv_i
(c_i,d_i∈C:複素数体 (i=1,2,…,n))
f(v_j)=Σ[i=1..n]a_ijv_i
と書け,((a_ij)=:Aをfの表現行列という)

<f(x),y>=<f(Σ[i=1..n]c_iv_i),Σ[i=1..n]d_iv_i>
=<Σ[i=1..n...続きを読む

Aベストアンサー

線型写像が「positive」というのは不要?
というか・・・線型写像が``positive''ってことが
<f(x),x>≧0(∀x∈V)
ってことではないのですか?
これなら「+」という意味が分かります

<f(x),y>=<x,f(y)> (for∀x,y∈V)
だとなんで「positive」って名前なの?と疑問です.
#むしろ「transitive」(推移的)と名づけたいな

正規直交基底e1,...enをとれば
f(ei)の第i成分は表現行列{aij}の(i,i)要素aiiで
aii = (f(ei),ei) >= 0
だからトレースも0以上

Q数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交
[(2)の解]
この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して,
a_0=2/π∫[0..π]f(x)dx
は上手くいったのですが
a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから
2/π∫[0..π]f(x)cos(nx)dxに変形できません。
どのようにして変形するのでしょうか?

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1...続きを読む

Aベストアンサー

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでしょうか?
質問の文に
『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。』
とあったのでf(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)と表せる前提で話をして良いのかなと思ったのです。
また、f∈R[0,π]の関数を周期[-π,π]で展開することも可能なので一概に周期[0,π]とも言えないと思うのです。
(ただし、その場合にも偶関数として展開、奇関数として展開などの適当な前提は要りますが)


どうやら私が質問や問題の内容を推測して回答してしまったのがよくなかったようですね。
今回は補足要求と言うことにしておきます。

・今回の問題(2)の題意は
  fがa_0/2+Σ[n=1..∞]a_ncos(nx)で書けることを示すことですか?
それとも
  f(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)とするとa_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dxとなることを示すことですか?

・『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数』とはこの場合どういう意味でしょう?把握してらっしゃいますか?

・fを展開する際の周期ですが本当に[0,π]ですか?
[0,π]ではcos(nx)とsin(mx)が直交しないですし、
f(x)=Σ{b_n*sin(nx)}と奇関数として展開するしか出来ない気がするんですが。

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでし...続きを読む

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Qv1=(0,1,1),v2=(1,1,0)で生成される実ベクトル空間R

v1=(0,1,1),v2=(1,1,0)で生成される実ベクトル空間R3の2次元部分空間の正規直交基底を求めよ。

という問題なのですが、「Rnのm次元部分空間」(ここでは、R3の2次元部分空間)はどのようにもとめればいいのでしょうか。また、問題の詳細な解き方を教えてください。
よろしくお願いします。

Aベストアンサー

シュミッドの直交法


v1およびv2の線形結合から、正規直交系のベクトルV1,V2を作る方法です。
※ベクトルは何本あっても大丈夫です。

まず、v1はそのまま正規化して
V1=v1/|v1|
とします。
次に、v2に対して
V2={v2-(v2,V1)V1}/|v2-(v2,V1)V1|
と変換します。
このベクトルとV1との内積は
(V1,V2)=0
なので直交します。

もし、ベクトルが3本あったとしても
V3={{v3-(V3,V2)V2-(V3,V1)V1}|v3-(V3,V2)V2-(V3,V1)V1|
を作れば、V1,V2,V3は正規直交系です。

この問題の場合

V1=(0,1,1)/√2
V2={(1,1,0)-(0,1,1)/2}/|~|
=(1,1/2,-1/2)/|~|
=(2,1,-1)/√6


人気Q&Aランキング

おすすめ情報