次の無限級数の和をもとめよ。

Σ (1/(4^n)-1/(5^n))
n=1

わかった方、教えて下さい!(>_<)

さっきも無限級数の和についてききました。。。
苦手です。(T_T)

このQ&Aに関連する最新のQ&A

A 回答 (1件)

むふふ,ちょっくら工夫するだけで・・・!



Σ (1/(4^n)-1/(5^n))
=Σ ((1/4)^n-(1/5)^n)
=Σ ((1/4)^n)-Σ((1/5)^n)

むむ!?これって(等比数列-等比数列)ではないですか!

んで,「無限」というのが苦手ならば,「有限」の総和Snを求めて,nを無限に大きくすればいいと考えると,最初のうちはラクですよ.要するに,数学Aの「数列」が鍛えられていれば,あとはそんなにムズカシクないのですよん.

1からnまでの等比数列の総和Snの求め方は,数学Aの教科書に載っていますよね.
そして,無限級数の総和をSとすると,
S=lim(n→∞)Sn
となるのでした.

以上!
    • good
    • 0
この回答へのお礼

あっ、めっちゃ簡単だったんですね!!!
なんかわかんなかった自分があほらしいです(汗

ありがとうございます!

お礼日時:2002/02/25 02:56

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は?

(1)lim[n→∞](3^n/(2^n+n^2))
(2)lim[n→∞](2^n+3^n)^(1/n)

の極限値がわかりません。
(1)は3^nで分母・分子を割って
lim[n→∞](3^n/(2^n+n^2))
=
lim[n→∞][1/{(2/3)^n+n^2/3^n}]
までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。
どうなるのでしょうか?

あと、(2)は対数を取って
lim[n→∞]log(2^n+3^n)^(1/n)
=
lim[n→∞](1/n)log(2^n+3^n)
までいけたのですがここから先へ進めません。

Aベストアンサー

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、

 a(n+1)/a(n) = [(n+1)^2/3^(n+1)]/[n^2/3^n]

と比をとってみると、

 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 … (3)

ですが、nが大きいときには、2/n < 1, 1/n^2 < 1 なので、(3)は、

 a(n+1)/a(n) < 1

となり、単調に減少することがわかります。
まずこの時点で発散はしないことがわかります。
また、a(n) > 0 なので、lim_{n→∞} a(n) ≧ 0 となります。

もし、a(n) の収束値bが、正の有限値なら、n→∞で、
 a(2n)/a(n) → b/b = 1
になるはずですが、
 a(2n)/a(n) = [(2n)^2/3^{2n}]/[n^2/3^n] = 4/3^n → 0
になるので、収束値bは正の有限値にはなりません。

従って、
 lim_{n→∞} a(n) = 0 … (4)
が得られます。

[(4)の別証]
(3)式 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 より、
n>10で、
 a(n+1)/a(n) < [1 + 2/10 + 1/100]/3 < 2/3
故に、n→∞ のとき、
 0 < a(n) = [a(n)/a(n-1)]・[a(n-1)/a(n-2)] ・…・ [a(12)/a(11)]・a(11)
      < (2/3)^{n-11}× a(11) = (2/3)^n × (3/2)^{11}a(11) → 0
故に
 lim_{n→∞} a(n) = 0
が得られる。
(別証終わり)


[(2)について]

まず感覚的なことを説明しますと、nが大きいとき、2^nは3^nに比べてはるかに小さくなるので、基本的に、lim[n→∞](2^n+3^n)^(1/n)の、2^n+3^nの部分は3^nに近づくことがわかり、問題の式は(3^n)^{1/n}=3 になることが予想されます。

これを式で言うには、対数をとるより、

 lim_{n→∞} [3^n×{1+(2/3)^n}]^{1/n}
 = lim_{n→∞} 3×[1+(2/3)^n]^{1/n} … (5)

と変形するのが良いでしょう。(2/3)^n → 0 なので、
 [1+(2/3)^n]^{1/n} → 1 … (6)
なので、
 (5) = 3
になります。


なお、(6)が明らかと思われない場合は、
 1 = 1^{1/n} < [1+(2/3)^n]^{1/n} < 1+(2/3)^n → 1
(∵ a > 1 に対して、a^{1/n} = (a^{1/n})^n = a )
より、[1+(2/3)^n]^{1/n} → 1
と証明します。

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、...続きを読む

Q無限級数Σ(n=1~∞)(n/n^2+1)の収束・発散

無限級数Σ(n=1~∞)(n/n^2+1)の収束・発散はどのようにしてもとまるのでしょうか?

n^2+1は全て分母にあります。
ダランベールを試したのですが…値が1になってしまい行き詰ってます…。

判別方法と回答をお願いします…。

Aベストアンサー

n ≧ 1 において
n/(n^2 + 1) ≧ n/(n^2 + n) = 1/(n+1)

∴ Σ n/(n^2+1) ≧ Σ 1/(n+1)
発散

QΣ[n=1..∞]a_n (a_n>0)は収束する。Σ[n=1..∞]a_n/n^pが収束するようにpの全ての値を求めよ

[問]Σ[n=1..∞]a_n (a_n>0)は収束する。Σ[n=1..∞]a_n/n^pが収束するようにpの全ての値を求めよ。
[解]
(i) p>0の時,
1/1^p≧1/2^p≧…≧0且つlim[n→∞]1/n^p=0
よって定理「Σ[n=1..∞]a_n∈Rで{b_k}は単調且つlim[n→∞]b_n=0⇒Σ[n=1..∞]a_kb_kも収束」より
Σ[n=1..∞]a_n/n^p∈R
(ii) p=1の時
Σ[n=1..∞]a_n/n^p=Σ[n=1..∞]a_nで収束(∵仮定)
(iii) p<0の時
が分かりません。
どのようにして判定すればいいのでしょうか?

Aベストアンサー

簡単な判定方法はありません。
Σ[n=1..∞]a_n/n^p
のタイプの級数をディリクレ級数といいます。冪級数の収束半径のようなものがあり、pの実部がσより大きいと収束し、pの実部がσより小さいと発散するような実数σが存在します。pの実部がσのときは収束することもあれば発散することもあります。
この問題の場合σが負または0であること以上のことはわかりません。a_nによってσは異ります。

QParsevalの等式と指示された関数を使ってΣ[k=1..∞]1/(2k-1)^2とΣ[k=1..∞]1/k^2の和を求めよ

[問] (1) 直交系{sin(nx)}は[0,π]で完全とする。Parsevalの不等式は
Σ[n=1..∞](b_n)^2=2/π∫[0..π](f(x))^2dxとなる。但し
,b_n=2/π∫[0..π]f(x)sin(nx)dx
(2) Parsevalの等式と指示された関数を使って次の級数の和を求めよ。
(i) Σ[k=1..∞]1/(2k-1)^2,f(x)=1
(ii) Σ[k=1..∞]1/k^2,f(x)=x


で(2)の求め方が分かりません。
b_n=2/π∫[0..π]1・sin(nx)dx=2/π∫[0..π]sin(nx)dx=2/π[-1/ncos(nx)]^π_0=4/(nπ)
Σ[n=1..∞](b_n)^2=2/π∫[0..π]f(x)^2dx=2/π∫[0..π]1dx=2/π[x]^π_0=2/π・π=2

となったのですがこれからどうすればいいのでしょうか?

Aベストアンサー

偶関数だからというより、nが偶数のとき
 b_n = 2/π∫[0..π] sin(nx)dx
は n/2周期にわたる積分になるので0です。

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。


このカテゴリの人気Q&Aランキング

おすすめ情報