痔になりやすい生活習慣とは?

追試に出る問題なんですが、1つ全くわからない問題がありました…
問題全文は「支点が水平にy0=Acosωtと単振動する単振り子の運動をラグランジュの運動方程式で扱え。」で、これより簡単バージョンの「単振り子の運動をラグランジュの運動方程式で扱え。」だと、単に運動エネルギー・位置エネルギー、ラグランジュの運動方程式を適用するだけで解けたのですが[ θ``=-(g/l)sinθ ]、この問題だけが解けなくてショボンとしてます…
単振動する単振り子って…
運動エネルギーがわかりません

このQ&Aに関連する最新のQ&A

A 回答 (1件)

 θを測る原点が動いていることになりますからその変化分を入れたθを算出します。

その式を単振動の式に代入すると強制振動の方程式になりますから、特解を一つつけ加えればいいのです。
    • good
    • 0
この回答へのお礼

こんにちは!
θ``=-(g/l)sinθをy0=Acosωtに代入するだけでいいということですか??

お礼日時:2006/08/02 13:22

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q水平方向に固定されていない単振子

物理が苦手で困ってます。お助けいただければ幸いです。

質量mの質点をつないだ、長さL 固有振動数ω0 の単振子を考える。ただし、その支点は水平方向に固定されておらず、水平方向の位置座標は外部から見てx0(t)と与えられるものとする。
単振子の振れの角度θ(t)に対して|θ(t)|<< 1 が成り立ち、最下部で0、反時計回りを正にとる。重力加速度をg とする。

(1)ω0を求めよ。

(2)単振子の振れ角θ(t)が満たす運動方程式が次式であることを示せ。
     (d^2/dt^2)θ + (ω0^2) θ = -(d^2/dt^2)x0^2/L



             ←→x0(t)
ーーーーー・ーーーーー→X
               |
               ||      
               | |
               |θ|                 
               |   |
               |    |
               ↓     ●

Aベストアンサー

(1) 単振り子の公式どおり √(g/L)
(2) 地道に解けば出てきます。

v=d(x0)/dt, ω=dθ/dt とすると

運動エネルギーは T=(1/2)mv^2 + (1/2)mLω^2 + mvLcosθω
ポテンシャルエネルギーは U= mgL(1-cosθ)
ラグランジアン L= T-U

として d(∂L/∂ω)/dt - ∂L/∂θ = 0 で、sinθ≒θ, cosθ≒1
とすれば (2) が導出できます。

Q単振り子の運動方程式

重力加速度g、質量m、紐の長さl、空気抵抗無視。

単振り子の運動方程式はこうなりますよね。
mlθ"=-mgsinθ
これがよくわからないのです。
どういう座標系についての運動方程式なのですか?

軌道にそってx軸を定めると
θl=x
mx"=-mgsinθ  軌道に沿った運動方程式?
⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの?
そしてこれの一般解はどういう風になりますか?
初期条件としてt=0でθ=φとします。

Aベストアンサー

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」などとわざわざ断っていないわけです。
極座標系に移行したことで問題の本質はx(t), y(t)の代わりにl(t), θ(t)を求めることに帰着します。大抵の場合はひもは伸び縮みしないと仮定しますのでlについて解く必要はなく、θについてのみ解くことになります。その方程式が
ml(d^2θ/dt^2)= -mg sinθ  (3)
なわけです。

しかしこの方程式は初等関数の範囲では解くことが出来ません。そこで初等物理の範囲ではθが小さい場合に限って問題を考えることにし、
sinθ≒θ  (4)
の近似を行って解きます。このとき(3)は
ml(d^2θ/dt^2) = -mg θ  (5)
となります。これの解き方はいろいろあります。線形微分方程式の理論を知っていれば解は直ちに
θ= C sin{√(g/l) t+α} ←Cは定数  (6)
だと分かります。αはC sinα=φを満たす定数です。
2階の微分方程式ですが初期条件が「t=0でθ=φ」の一つしか与えられていないので、定数が一つ未定のまま残ります(*1)。

愚直に微分方程式を解くのであれば下のようにやります。
l(d^2θ/dt^2)(dθ/dt) = -g θ(dθ/dt)
d/dt {(dθ/dt)^2} = -(g/l) d/dt (θ^2) ←両辺に(dθ/dt)をかけた上で、積の導関数の公式((y^2)'=2y y')を逆に使った
(dθ/dt)^2 = -(g/l) θ^2 +C1 ←C1は積分定数
dθ/dt = √{-(g/l) θ^2 +C1}  (7)
ここでθ=√(l/g)√C1 sinψと変数を変換すると
dθ/dt = √C1√(1-sin^2 ψ)  (8)
を経て
√(l/g)√C1 cosψ dψ = √C1 cosψ dt  (9)
と変形でき、両辺を積分することで
√(l/g) ψ= t+C2 ←C2は積分定数  (10)
を得ます。θの表式に戻すと
θ=√(l/g)√C1 sin{√(l/g) (t+C2)}  (11)
となります。これは本質的に(6)と同じ式です。初期条件「t=0でθ=φ」を代入することで
φ=√(l/g)√C1 sin{√(l/g)C2}  (12)
を得ます。これを使うと(11)からC1, C2のいずれかを消去できます。初期条件がもう一つあれば運動は一意に定まります(脚注参照)。

もちろん、「軌道に沿ってx軸を定める」でも解けます。この場合の運動方程式は
m(d^2 x/dt^2)= -mg sin(x/l)  (13)
となります。本質的に(3)と同じであることは申し上げるまでもなく、同様に解くことができます。

考え方は上記でよいはずですが中間で計算ミスがあるかも知れませんので、ONEONEさんご自身でも確認しながら読んで頂けると幸いです。

*1 もし初期条件が「t=0でθ=φまでおもりを持ち上げて手を放す」という意味であれば、「θの最大値はφ(厳密には|φ|)」という条件が新たに加わるので運動は一意に定まります。この場合はφsinα=φからα=π/2、よってθ=φsin{√(g/l) t+(π/2)}=φcos{√(g/l) t}と求めることができます。

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」...続きを読む

Q球の慣性モーメント

 球のモーメントを求める時、球の中の薄い円板を考え、それを積分していくと思います。
この時
2∫r^2dm
にr^2をそのままにしてdmを薄い円板質量を入れて求めると教科書の答えが違ってくるのは何故でしょう?
教科書は
円板の慣性モーメントdI=r^2/2×dm
を考え、2∫(円板の慣性モーメント)
と入れて求めています。
 慣性モーメントの公式は ∫r^2dm
なのではじめの方法も間違っていない気がするのですが、2番目の方が正しいのですよね?
 はじめの方法は何が行けないのでしょうか?
 もし分かる方がいらっしゃったら教えてください。

Aベストアンサー

この場合のrとはなんでしょう?
z軸からの距離でなければなりません。
z軸の周りの慣性モーメントを求めたい(球の対称性によりどこを軸にとっても同じ)わけですから。
だから、I=ΣΔmr^2=∫r^2ρdV
=∫∫∫r^2ρdxdydz=∫∫∫ρ(x^2+y^2)dxdydz=Iz
として計算すべきものです。

もし、I=2∫r^2dmとして計算するとどうなるでしょう?これは、2倍しているのは左右で二つあるからだと思います。∫r^2dmのdmを、例えばx軸上の距離rの位置にある、x軸に垂直な薄い円板の質量としてしまうと、その薄い円板上の質点の
部分部分によって、z軸からの距離は変わってきますよね。それなのに、円板を構成する全ての質点がz軸から距離rにある、としてしまっているのがr^2dmという式にほかなりません。つまり、z軸から距離rにあるのは
円板を構成する質点のなかではx軸上の一点だけで、
そのほかの円板上の質点はz軸からの距離がrより大きいのです。
だから、r^2dmのdmに微小円板の質量を入れてはいけないのです。

dI=r^2/2×dmを使う場合は、z軸の周りの円板の微小慣性モーメントは既に計算されているから、それをdmについて加え合わせる分には問題ありません。

参考までに,Iz=∫ρ(x^2+y^2)dV
Iy=∫ρ(x^2+z^2)dV,Ix=∫ρ(y^2+z^2)dV
Ix=Iy=Izより、
Iz=(Ix+Iy+Iz)/3=∫2/3ρr^2dV(このrは球の半径方向)
=∫(2/3)ρr^2(4πr^2dr)=2/5Ma^2 (a=球の半径)

この場合のrとはなんでしょう?
z軸からの距離でなければなりません。
z軸の周りの慣性モーメントを求めたい(球の対称性によりどこを軸にとっても同じ)わけですから。
だから、I=ΣΔmr^2=∫r^2ρdV
=∫∫∫r^2ρdxdydz=∫∫∫ρ(x^2+y^2)dxdydz=Iz
として計算すべきものです。

もし、I=2∫r^2dmとして計算するとどうなるでしょう?これは、2倍しているのは左右で二つあるからだと思います。∫r^2dmのdmを、例えばx軸上の距離rの位置にある、x軸に垂直な薄い円板の質量としてしまうと、その薄い円板上の質点の
部分部...続きを読む

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q導体球殻の電位

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方法に自信がありません。

(3)の時、

V=-∫(∞→r)E・dr = (q/4πε_0)・(1/r)

(2)の時、
V=-∫(∞→b)E・dr -∫(b→r)0・dr = (q/4πε_0)・(1/b)

(1)の時、

V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

(1)の答えが解答では(q/4πε_0)(1/r)
ではなく
(q/4πε_0)((1/b)+(1/r)-(1/a))
となっていました。

なぜなのでしょうか。

ご教授お願い申し上げます。

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方...続きを読む

Aベストアンサー

考え方も計算も、ほぼオッケーですよ。
(1)のときの電位ですが
V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

真ん中の(b→a)の積分のときは、上で書かれているように E=0 なので
積分も0です。
ですから
V=(q/4πε0)( (1/b) - (1/∞) + (1/r) - (1/a) )
になりますね。

Q中が中空の球の慣性モーメントの求め方について

中が中空の球(球殻)の慣性モーメントの求め方がわかりません。
球の質量をM、半径をaとすると2/3Ma^2となるとは思うのですが、求める過程がわからないのです。
教えてください。

Aベストアンサー

球の中心を原点とした一般的な直交座標と極座標を考えて下さい。

r≠aではρ=0なのでr=aだけを考えればよく、面積分に帰着するわけです。
球の質量はr=aに一様分布なので(面)密度ρ=M/(4πa^2)となります。

それで、座標Ω=(θ,φ)において、z回転軸周りでは面積素片はdS=a^2*sinθdθdφになりますよね。さらに軸からの距離r'=a*sinθです。

あとはI=Mr^2に沿って計算すれば、
(0<θ<π, 0<φ<2π)

I=∬ρr'^2 dS
=ρ∬(a*sinθ)^2*a^2*sinθdθdφ
=ρa^4∬(sinθ)^3 dθdφ
=Ma^2/(4π)*2π∫(sinθ)^3 dθ
=Ma^2/2*(4/3)
=(2/3)Ma^2

と、こんなもんでよろしいのではないでしょうか。
慣性モーメントの計算なんて7年ぶりくらいです。ああ、間違ってないといいけど・・・(自信なくてすみません)

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q電荷が球殻内に一様に分布する問題について

「 内半径a,外半径bの球殻(aくb)があり,球殻の中心からの距離rとする.電荷Qが球殻部分(aくrくb)に一様に分布しているとき,電界と電位を求めよ.また,rくa,bくrは真空として真空の誘電率をε0する.」
という問題です.
この問題は試験問題だったため回答がないので,一応参考書などを読んで似たような問題を見たりしたのですが,今一つ理解できません.
もしよろしかったら,どなたか教えていただけないでしょうか?
よろしくお願いします.

Aベストアンサー

hikamiuさんが既にお答えされていますので、以下は具体的な計算のやり方についての話です。計算のやり方は大学の先生のご好意による講義ノート(参考URL)が公開されていますので、そこの7の6を参照してみてください。もっともその前に講義ノートの6の5で少し計算の地ならしをしてから進まれたほうが理解が速いかもしれません。

参考URL:http://www-d.ige.solan.chubu.ac.jp/goto/docs/djk1/p0idxA.ssi

Q陽子・電子間のクーロン力と万有引力

問題演習で、「陽子と電子の電荷は等量で逆符号とした時、0.53Å離れた電子と陽子の間に働くクーロン力の大きさを求め、これを、陽子と電子間に働く万有引力と比較せよ」という問題が出ました。
クーロン力の大きさは、
陽子の電荷をQ=1.6*10^-19[C]
電子の電荷をq=-1.6*10^-19[C]として、
F[N]=(1/4πε0)*(|Qq|/r^2)からF=8.2*10^-2[N]とわかったのですが、
陽子と電子間に働く万有引力の求め方がわかりません。
Wikiで調べるとF=G*(Mm/d^2)という式がでましたがMとmに入れる物質の質量は、この問題の場合、陽子・電子それぞれの電荷を代入して計算すればいいのでしょうか?
どなたか教えて下さい。よろしくお願いします。
*答は3.6*10^-47[N]です。

Aベストアンサー

 Mとmには、それぞれ、陽子と電子の質量が入ります。
 (万有引力ですから、電荷を入れてはいけません。単位も合わなくなりますよ。)

 Wikiに次の数値が掲載されていましたので、参考になされてはいかがでしょうか。

  陽子の質量: 1.672210×10^(-27) [kg]
  電子の質量: 9.1093826×10^(-31) [kg]
  万有引力定数:6.67259×10^(-11) [Nm^2/kg^2]

 Wikiの万有引力定数も使って出すと、概ね近い値が出ますよ。
  3.6*10^(-47) [N]

http://ja.wikipedia.org/wiki/%E9%99%BD%E5%AD%90
http://ja.wikipedia.org/wiki/%E9%9B%BB%E5%AD%90
http://ja.wikipedia.org/wiki/%E4%B8%87%E6%9C%89%E5%BC%95%E5%8A%9B%E5%AE%9A%E6%95%B0

Q物理学を学んだ学生の就職について

物理学を学んで修士課程を終えたとして就職でどうのような選択肢がありますか?

Aベストアンサー

buturidaisukiさん、こんにちは。

就職のことはやはり気になりますよね。同じようなことを普段よく尋ねられるので、多くの卒業生を見てきた経験から現実にどうかということを書かせていただきます。

まず、結論から書きますと、ANo.1~ANo.3の皆さんも書かれているように、本人さえしっかりしていれば、大抵の会社は選択肢に入ると思います。

ANo.4さんは、分野は影響は受けると書かれていますが、ある程度、そういうこともあるでしょうが、それほどではないと私は思います。というのは、元々、理学部を卒業する場合には、勉強した「知識」をそのまま使って企業で活躍するというセンスよりも、むしろ、そこで習得した「能力」を生かすというセンスだからです。逆にもし工学部を卒業しても、そこで学習した知識がそのままどんぴしゃで企業でも使えるケースは珍しいようです。

また、物理の中での理論と実験の違いですが、私の知る限り、理論だと実験よりも会社には不利ということはないと思います。それには二つ理由があります。一つは現代の産業の現状は、IT系に重点が移ってきていて、理論系なら殆どの場合コンピューターをかなり使いますので、その面でかえって有利であること。もう一つは測定器や作業機械の使い方などは、実験系だからといって同じ機械を使うとは限りませんし、どちらにしても入社後に勉強するケースのほうが多いと思われるからです。

企業の中で、理学部出身の人が工学部出身の人よりも少ない主な原因は、日本中で工学部の定員が非常に多いことでしょう。私の見る限り、卒業生が就職で苦労するケースは、分野というよりも、むしろ個々人のパーソナリティに依ることが多いように思われます。企業では周りの環境に柔軟に順応してくれる人、しっかり意思疎通の出来る人を好むでしょうし、当然、企業の利益にかなわないことをしたいという人は、どんな学部の卒業生でも取らないでしょう。


次に具体的な現状を書きます。どこの大学とは、もちろんここでは書けませんが、卒業生の就職先はやはりIT係を中心に製造業が多いです。それは元々日本の産業構造自体がIT係に重点が移ってきているためだと思います。一言にIT係といっても、かなり幅が広いですし、IT係以外の製造業も多いです。どんな製造業でも最近はコンピューターはかなり使うと思われます。

製造業の中には当然、民間企業の研究所に就職するケースもあります。民間企業の研究所では、ごく一部の例外を除いて、その企業の利益に直結することを研究します。その内容は、物理学に基礎を置いた研究もありますし、物理学とは直接の関係のない研究をすることもあります。物理の卒業生はどちらの方向にも進んでいます。ただし「直接の関係のない」と言っても、物理はあらゆるものの基礎になりますから、殆どのものは何らかの関係はあります。

次に多いのは、公務員や中学高校教諭だと思います。その場合は、もちろん、公務員試験の勉強や、教員免許をとり教員採用試験の勉強をする必要があります。

製造業に比べれば、数は少なくなりますが、商社や金融関係に就職した人もいます。また特殊な例ではパイロットになった人もいます。


せっかく物理学を勉強したのに、就職した後に直接に関係のないものをやるのは勿体ないとか、しんどいとか思われるかもしれません。しかし、ANo.3さんも書かれているように、物理学というのは、あらゆる学問や科学技術の基礎であり、また、知識そのものを使わなくても、物理学を学ぶ過程で習得した「現実に根ざした論理的思考」というのは、どんな分野にも共通に必要なものなのです。ANo.4さんも書かれているように、「仮説・検証・修正」という物理学の方法は、あらゆることに適用が可能です。

また、「知識の陳腐化」ということがあります。技術というものは日進月歩ですから、大学でどんな分野の学問をした場合でも、どのみち入社後にも勉強をし続けていかないといけません。しかし理学系と工学系の違いは、理学部で勉強したことは、時間が立って成り立たなくなるようなことではないというところです。物理で言えば、力学や電磁気学などの知識が陳腐化することは未来永劫ありません。それらは自然界の法則だからです。ところがある特定の「技術」というものは、多くの場合数年で陳腐化してしまいます。

さらに、逆に基礎的な知識が必要になったときに、技術だけを学んでいた人が基礎に立ち戻って勉強しなおすのは、大変なエネルギーが必要になります。一度でも基礎を十分に勉強したことがある人は、忘れてしまっていても、少し勉強すれば思い出すことができます。基礎をしっかり勉強した上に応用を勉強するほうが、応用だけを勉強しているより安心です。

これは教育関係に進む場合も同様だと思います。やはり理学部でしっかりその分野の内容を勉強しつつ教員免許も取るほうが、教育学部で教員免許をとるよりも好ましいと、個人的には思っています。(両方やるのは確かに大変ですが。)


最後に、修士課程に進むメリットについて付け加えます。学部で、およそ力学、電磁気学、量子力学、熱統計力学を学習するわけですが、それは学問の基礎の部分です。卒業研究~修士課程で、研究(らしきもの)に手を染めることにより、その基礎部分の知識の本当の意味が、より正しく深く理解できます。また、現実の問題を考えることにより、「問題解決能力」も身につけることができます。研究の世界では必要に応じて問題を自分で整理して設定する能力が求められます。誰かがきれいに作った問題を解くだけの話ではなくなってくるのです。そのような能力はどんな分野に就職しても必要とされるものです。大学院ではその部分も学ぶことが出来るはずです。

buturidaisukiさん、こんにちは。

就職のことはやはり気になりますよね。同じようなことを普段よく尋ねられるので、多くの卒業生を見てきた経験から現実にどうかということを書かせていただきます。

まず、結論から書きますと、ANo.1~ANo.3の皆さんも書かれているように、本人さえしっかりしていれば、大抵の会社は選択肢に入ると思います。

ANo.4さんは、分野は影響は受けると書かれていますが、ある程度、そういうこともあるでしょうが、それほどではないと私は思います。というのは、元々、理学部を...続きを読む


人気Q&Aランキング