方程式2x^2-3xy+λy^2+5y+μ=0がxy平面上の直交する2直線を表すようにλ,μを定め、この2直線の方程式を求めよという問題なんですが、解き方、考え方が分かりません。
答は λ=μ=-2
  2x+y=2、2y-x=1 です。

直交する2直線が上方程式で表せれるということもよく分からないので、その辺りもよろしかったら教えてください。

A 回答 (7件)

直線の式は ax+by+c=0 という風に表す、というのはOKですね。


与えられた式が(ax+by+c)(px+qy+r)=0 とできたとすると
ax+by+c=0 または px+qy+r=0 となり、2つの直線を表すことになります。
ここまでは、may-may-jpさんの回答の通りですが、ただ因数分解できるだけではλとμは特定できません。そこで必要になるのが「直交」の条件です。

直交する条件は2つの直線の傾きの積が-1になることです。
ax+by+c=0 を変形して y=(a/b)x+(c/b) ただし b≠0
同様に px+qy+c=0 を変形して y=(p/q)x+(r/q) ただし q≠0
とすると 傾きはそれぞれ a/b,p/qですか積が-1 すなわち
(a/b)・(p/q)=ap/bq = -1 ∴ ap = -bq が直交条件です。

なお、b=0(q=0)のときは直線はy軸に平行になります。このとき直交する直線はx軸と平行になり、xの係数が0 つまりp=0(a=0) になります。このときもap = -bq (=0)で成り立ちます。

さて(ax+by+c)(px+qy+r)=0 の左辺を展開すると
apx^2+bqy^2+(aq+bp)xy+(ar+cp)x+(br+cq)y+cr=0
となります。(途中の計算はご自分で確かめてください。)
ここで直交条件をみると x^2 とy^2の係数に注目すればよいことが分かります。
与式に戻って、2x^2-3xy+λy^2+5y+μ=0のx^2 とy^2の係数をみれば 2=-λ すなわちλ=-2が求められます。
これを代入して
2x^2-3xy+2y^2+5y+μ=0
これが(ax+by+c)(px+qy+r)=0 の形に因数分解できれば良いわけです。
x^2,y^2,xyの係数に注目すると
(2x+y+c)(x-2y+r)=0 --(*)という形になることは容易に分かります。
あとはx,yの係数から
2r+c=0
r-2c=5
の2式が出ますので、連立方程式を解いて
r=1, c=-2 よってμ=cr=-2
となります。
このrとcを(*)に代入すれば
(2x+y-2)(x-2y+1)=0 となり、直線の式は 2x+y-2=0,x-2y+1=0
と求まります。
答えの2x+y=2、2y-x=1 は上記の式の定数項を移行した形ですね。
    • good
    • 0
この回答へのお礼

直交条件:傾きの積=-1 というのをすっかり忘れていました。
ていねいな説明ありがとうございます。

お礼日時:2002/03/14 00:35

問題の方程式を2で割り


x^2-(3/2)・x・y+(λ/2)・y^2+(5/2)・y+μ/2=0・・・(1)
とする
この問題は時間をかければ確実に解ける問題だからいかに手を抜けるかが勝負です
そのためできるだけ少ない未知数を使って2つの直線を表現したいのだがそのために下記条件を利用する
・x^2の係数が1であること
・xの係数が0であること
・2つの直線が直交すること
すると未知数はa,b2つでよいことがわかる
前記方程式は
(x+a・y+b)・(x-(1/a)・y-b)=0・・・(2)
(1)と(2)のx・y,y^2,y,1(定数)の係数を等しいとすれば
未知数と等式数がともに4なので恙なく未知数は定まり問題は解かれる
    • good
    • 0
この回答へのお礼

いかに手抜きできるかというのは、大切ですね。
参考にさせてもらいます。ありがとうございました。

お礼日時:2002/03/14 00:38

BUDHAです。


細かい点、間違えてすいません。

A×B=0 と A=0またはB=0は同値で、お互い
に「必要十分条件」でした。

また、直線の一般式は ax+by+c=0 でした。

失礼しました。若いっていいよね。(^^)
    • good
    • 0
この回答へのお礼

ありがとうございました。
また機会があったらお願いします。

お礼日時:2002/03/14 00:41

#4のhinebotです。



直交条件を説明している部分で
>傾きはそれぞれ a/b,p/qですか"ら"積が-1 すなわち
ということで、"ら"が抜けてました。

あと、
>ここで直交条件をみると x^2 とy^2の係数に注目すればよいことが分かります。
の部分、ちょっとはしょってしまいましたが、
直交条件である ap=-bq は (x^2の係数)=-(y^2の係数)を表してます。
それで、その後の
>与式に戻って、2x^2-3xy+λy^2+5y+μ=0のx^2 とy^2の係数をみれば 2=-λ すなわちλ=-2が求められます。
へつながります。

ついでですが、#2のBUDHAさんの回答の「つまり」の次の式
=0の直前のλはμの誤りですね。(つまらないつっこみでした。)
    • good
    • 0

すいません。

BUDHAです。
一部訂正いたします。

ただしくは (2x+y-2)(2Y-x-1)=0

です。

何分、歳なもんで.........。
    • good
    • 0

(2x+2Y-2)(2y-x-1)=0


を満たす必要条件は、2x+2y=0または2y-x-1=0ですから、

これは(x、Y)が直線2x+2y=0上または、直線2y-x-1=0上にあるということと同値です。

つまり
(2x+2y-2)(2Y-X-1)=2X^2-3xy+λy^2+5y+λ=0 ということです。

以上は解答から問題を導いた訳ですが、問題から解答を導くには、
与式左辺=(ax+bY)(cX+dY) とおいて、a,b,c,dを求めることになります。

乱筆ごめんなさい。
    • good
    • 0

左の式が因数分解できれば、


(1の式)(2の式)=0
となり、この2つの式が直線の式になるのではないでしょうか。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx+y=u、xy=vとする。x^2+xy+y^2=1の最大値と最小値を

x+y=u、xy=vとする。x^2+xy+y^2=1の最大値と最小値を求めなさい。
という問題です。出来るだけ詳しい回答をお願いします。

Aベストアンサー

x^2+xy+y^2=1をu,vで書きなおすと
u^2-v=1
よって
v=u^2-1 (1)
uをいくら多いくしても小さくしても(1)の関係さえ成り立ってればよいのではないか、
従ってuの最大値は∞、最小値は-∞と考えたくなりますが
一つ条件を忘れています。
それはx,yが実数であるということです。
x,yを解とする2次方程式は
t^2-(x+y)t+xy=0
よって
t~2-ut+v=0
これが実解を持つ条件は判別式Dが
D=u^2-4v≧0

v≦u^2/4 (2)

u,v平面に(1),(2)のグラフを描いてみると
結局放物線(1)の(2)より下の部分(交点もOK)
であることが解ります。
最大値は交点の正の方、最小値は負の方ということで
uの最大値は2√3/3、最小値は-2√3/3

さらにこのようなx,yが存在することを確認することが必要です。
u=2√3/3のときx=y=√3/3,u=-2√3/3のときx=y=-√3/3
よってOKです。

Q数学 計算(x二乗+xy+y二乗)(x二乗−xy+y二乗)(x4乗−x二乗y二乗+y4乗)↑

数学 計算
(x二乗+xy+y二乗)(x二乗−xy+y二乗)
(x4乗−x二乗y二乗+y4乗)

↑見づらくてすみませんT_T
途中の計算式、説明含めて教えて下さい。
来週、期末テストで助けで下さい…

Aベストアンサー

(x^2+xy+y^2)(x^2-xy+y^2)(x^2+y^2=A)
前の二項で、x^2+y^2=Aと考えると (A+xy)(A-xy) となり、 A^2-x^2y^2 
Aに (x^2+y^2)を代入して計算すると  x^4+x^2y^2+y^4  なります
x^4+y^4=B と考えると 与式は   (B+x^2y^2)(B-x^2y^2)

B^2-x^4y^4   Bに x^4+y^4 を代入すると (x^4+y^4)^2-x^4y^4

計算して、 x^8+2x^4y^4+y^8-x^4y^4=x^8+x^4y^4+y^8 

参考までに。

Q3x^2+7xy+2y^2-5x-5y+2=(x+2y-1)(3x+y-2)について

3x^2+7xy+2y^2-5x-5y+2を因数分解せよという問題で、xについて整理し、3x^2+(7y-5)x+(y-2)(2y-1)という方針で解いていくやり方と、
yについて整理し、2y^2+(7x-5)y+(x-1)(3x-2)という方針で解いていくとき方の2通りありますが、どちらで解く習慣を身につけておいた方がよろしいでしょうか?

Aベストアンサー

xやyのどちらの文字で整理するかで決めるのでなく、
次数の低い方、
その文字の現れる項数が少ない方
両方とも同じなら最高次の係数が小さい方
の文字に着目して整理して解くのが基本かと思います。

例題の場合はx,yについて共に2次、項数も共に3項で同じ、最高次の係数も3と2で素数の小さな数ですから、あまり差はありません。後は好みだけの問題でしょう。同じならxと決めて置いても

他の方法としてxとyの両方に着目し2次の項の因数分解
3x^2+7xy+2y^2=(x+2y)(3x+y)
をしてから、一時項を含めた因数分解に進めます。
左辺=(x+2y+a)(3x+y+b)
定数項ab=2に着目してa,bの候補を絞れば良いですね。

Q直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)

問題1
直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)のグラフを書き、その交点を求めよ。

問題2
直線(1)、(2)のなす角をΘ(0°≦Θ≦90°)とするとき、CosΘを求めよ。

問題3
直線(1)と(2)について、それぞれの方向余弦のうち、xの値が正であるものを求めよ。

⇔問題1はとけましたけど、問題2と3がわかりませんでした。

まず問題1は、x=-3-2t=-3+3s y=4+t=-7+4sとしました。sと置き換えたのは=とした時にtの値が同じとは限らないので、
結果
2t+3s=0 t-4s=-11となり、
t=-3、s=2となりました。
交点は(x、y)=(3.1)となりました(答)

問題2は
(1)の方向ベクトルと(2)の方向ベクトルがどのようにしたら求めてよいのか解らないのでとけませんでした。 いままで学んだ内容だと、二点P1(-1,3),P2(2,-1)をとおる媒介変数tを表せという問題をといてきて、
単純にp1p2=(x-x1,y-y1) をやって方向ベクトルをもとめ、x=x1+tl,y=y1+tmの公式にしたがってx=-1+3t,y=3-4tと方向ベクトルを求めていたのですけど、
今回はx-x1にあたる部分が題意を読んで何処なのかわかりませんでした。

題意のx=-3-2t、y=4+t (1)と(2)の式からx1の部分をー3、y1の部分を4とみるのでしょうか?
そうすると、x-x1、y-y1のx1とy1の部分はわかるのですけど、xとyが解らないので、引き算ができず、方向ベクトルが求まりませんでした。

答えをみるとl→=(-2,1)(1) m→=(-3、-4)(2)となってました。どうやったらこのように求まるのでしょうか?

問題3は手が付けられませんでした>_<

だれかこの問題詳しく教えてください、宜しくおねがいします!!>_<

問題1
直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)のグラフを書き、その交点を求めよ。

問題2
直線(1)、(2)のなす角をΘ(0°≦Θ≦90°)とするとき、CosΘを求めよ。

問題3
直線(1)と(2)について、それぞれの方向余弦のうち、xの値が正であるものを求めよ。

⇔問題1はとけましたけど、問題2と3がわかりませんでした。

まず問題1は、x=-3-2t=-3+3s y=4+t=-7+4sとしました。sと置き換えたのは=とした時にtの値が同じとは限...続きを読む

Aベストアンサー

宿題かも知れませんが、きちんと自分でお考えのようなので。

(2)です。

直線(1)は、(x,y)=(-3,4)+t(-2,1)
直線(2)は、(x,y)=(-3,-7)+t(3,4)

と書けます。ということは、

直線(1)は、点(-3,4)を通って、ベクトル(-2,1)に平行な直線
直線(2)は、点(-3,-7)を通って、ベクトル(3,4)に平行な直線

ということなので、2直線のなす角θは、2つのベクトル(-2,1),(3,4)[←これって、それぞれの直線の方向ベクトルです。]のなす角と同じか、又は、「180°-なす角」です。すると、内積を考えて、

cosθ=(-2*3+1*4)/√(4+1)・√(9+16)
=(-2)/(5√5)
=(-2√5)/25

となります。cosがマイナスなので、θは90°よりも大きいことが判ります。今、0≦θ≦90°なので、求めたい値は、

cos(180°-θ)
=-cosθ
=2√5/25

となります。

答の中で、(2)の方向ベクトルを(-3,-4)としているのは、最初から0≦θ≦90°を考慮しているためです。

宿題かも知れませんが、きちんと自分でお考えのようなので。

(2)です。

直線(1)は、(x,y)=(-3,4)+t(-2,1)
直線(2)は、(x,y)=(-3,-7)+t(3,4)

と書けます。ということは、

直線(1)は、点(-3,4)を通って、ベクトル(-2,1)に平行な直線
直線(2)は、点(-3,-7)を通って、ベクトル(3,4)に平行な直線

ということなので、2直線のなす角θは、2つのベクトル(-2,1),(3,4)[←これって、それぞれの直線の方向ベクトルです。]のなす角と同じか、又は、「180°-なす角」です。すると、内積を考えて、

cosθ=...続きを読む

Q「(5x+3)^10でx^pとx^(p+1)の係数比が21:20になる時のpの値」と「x+y=1を満たす全x,yに対してax^2+2bxy+by^2

こんにちは。識者の皆様、宜しくお願い致します。

[問1] (5x+3)^10の展開式でx^pとx^(p+1)の係数比が21:20になる時のpの値を求めよ。
[問2]x+y=1を満たす全てのx,yに対して
ax^2+2bxy+by^2+cx+y+2=0が成立するように定数a,b,cの値を定めよ。

[1の解]
(5x+3)^10=10Σk=0[(10-k)Ck 5x^(10-k)3^k]なので
p=10-kの時(k=10-pの時)
p+1=10-kの時(k=9-pの時)より
a:b=pC(10-p) 5^p 3^(10-p):(1+p)C(9-p) 5^(1+p) 3^(9-p)
で 1/(10-p):(1+p)/(2p-8)/(2p-9)=7:4 から
23p^3-199p+218=0
となったのですがこれを解いてもp=6(予想される解)が出ません。
やり方が違うのでしょうか?

[2の解]
与式をx+yという対称式で表せばならないと思います(多分)。
どうすれば対称式で表せるのでしょうか?

Aベストアンサー

 (1)Cをばらして比を簡略化するところで計算間違いがありそうな気がします。その経過をもう少し詳しく書いてもらえませんか?
 (2)a,b,cを求めるにはまず、x+y=1 を満たすすべての(x,y)で成り立つのですから、x+y=1を満たす(x,y)をまず代入してみてはどうでしょうか。候補としては、(1,0)(0,1)(2,-1)など。
 それから計算されたa,b,c でx+y=1を満たすすべてのx,yで成り立つかどうかを確認するという手順でどうでしょうか?


人気Q&Aランキング

おすすめ情報