惑星(質量m)が太陽(質量M、半径R)を中心として
楕円運動(長径a、短径b)する時の
角運動量と全エネルギーEの出し方を教えてください。
 
円軌道の場合は判りました。
楕円軌道という事でケプラーの法則を使うのは判ったのですが・・・。

宜しくお願いします。

A 回答 (6件)

今度は楕円の基礎。

http://www.d1.dion.ne.jp/~ksanuki/daen.htm

http://www004.upp.so-net.ne.jp/s_honma/area/elli …

計算天文学IIの
ここのハンドアウトのHTMLに式は全部乗ってる。

http://grape.astron.s.u-tokyo.ac.jp/~makino/koug …

これも、プログラム目的のもの。

分かりやすい本を数冊買うのが
解決に一番早いと思う。

参考URL:http://grape.astron.s.u-tokyo.ac.jp/~makino/koug …
    • good
    • 0
この回答へのお礼

ご丁寧に本当に有難うございます。
 まだ全部を理解しておりませんが、回答して頂いたのを参考に勉強いたします。

お礼日時:2006/08/20 12:52

それと、万有引力による2個の円運動。


これは、軌道を理解したのとちがーよ。^_^;

ここから、
円運動にバック!
http://www12.plala.or.jp/ksp/formula/physFormula …

http://ja.wikipedia.org/wiki/%E7%AD%89%E9%80%9F% …

http://www.narasaki.co.jp/quiz/q_021.htm

http://www.ishikawa-nct.ac.jp/lab/G/asoka/www/ta …

ケプラー式は、万有引力による2個の
楕円運動。

位置速度、距離による重力変化、力向きだから、
惑星から見たもの。
外からも見た方がいーよ。
    • good
    • 0

いいかい?


360日で一周する軌道を書く。
この円周長を出す。

この物体は、直線ABの、
点A、点Bを360日で進む。(等速度運動)

これをまた楕円に戻す。
X上と、Y上での、見かけの移動量が違う。

つまり、X上と、Y上1度辺りの円周の長さを出す。
移動角度を出す。
面積を出す。
1度での円周長を出す。

どー見ても、質量はいらねーだろ?

ここから、ケプラーに入る。
いきなりケプラーは危険だ。
    • good
    • 0

今度は計算であそぼーよ^^



円を半径まで切ってびろーんと広げる。
と、
半径が高さ。
円周が底辺になる。

半径5
円周31.4

高さ5、底辺、31.4

5*31.4/2=78.5

半径5
5^2*3.14=78.5

^0^

このあっぱらぱー三角形がこーなる。

http://ja.wikipedia.org/wiki/%E6%A5%B5%E5%BA%A7% …

これは、プログラム式と同じだから円の描けるプログラムを探すといーぞ。

も、一回円をやり直せ。(徹底的に積分を使え)
それと、#1さんの楕円。
プログラムを使って描け。

ここをもう一度やり直す。

#2さんの
(7)θ'=h/r^2は、前書いたろ?
E=(1/2)m(r'^2+r^2θ'^2)+GmM/r
ここいらもケプラー

馬鹿な俺は、
点Pを円で計算、角度10度で面積を出す。^^
問題は、
1度辺りのX,Yの変化が、
円の時とどう違うかだろう。

楕円上を軌道させよ。

Aの1度移動の速度と、Bの1度の速度(円周)
は違うだろう?

もちろん、
Vは一定だから
Aでは細い三角、Bでは太い三角になる。
この面積は同じだそうだ。

とりあえず、
足場を構築する事。

理解せずに前には行くな。

これは、算数の遊びだよん。^^
    • good
    • 0

物理学を専攻されているとのことですから,ある程度省略して書きますが(←大抵の力学のテキストに載っていると思いますので,それらで補充してください),


惑星の運動をx-y平面内に限定されているとします。太陽を原点,惑星の座標を(x,y),惑星は反時計回りに周回しており,x軸とのなす角をθとします。
(1)x=rcosθ,y=rsinθ
惑星の運動エネルギーをTとすると
(2)T=(1/2)m(r'^2+r^2θ'^2)
ラグランジアンをL,ポテンシャルエネルギーをU(r)とすると
(3)L=T-U=(1/2)m(r'^2+r^2θ'^2)-U(r)
Euler-Lagrangeの運動方程式より
(4)(∂L/∂r)-d/dt(∂L/∂r')=mrθ'^2-U'(r)-mr''=0
(5)(∂L/∂θ)-d/dt(∂L/∂θ')=-d/dt(mr^2θ')=0
ここで(5)はz成分の角運動量(lz=mr^2θ')保存則をあらわしていますね。ここでlzの値をmhと書くことにしますと
(7)θ'=h/r^2
これを(4)に代入するとrに対する運動方程式(8)が得られます。
(8)mr''=m(h^2/r^3)-U'(r)
ここで運動方程式を見やすくするために次の変数変換を施します。 
(9)u=1/r,r^2U'(r)=mh^2f(r)とおくと,軌道方程式として
(10)d^2u/dθ^2+u=f(1/u)
が得られる。fはポテンシャルの形によって決まる関数です。そこでポテンシャルとして万有引力ポテンシャルをとり,U(r)=-GmM/rとします。今,M≫mですので,換算質量μはμ=mとおくことができますので,以下のmは換算質量と読み替えてください。(9)よりf(r)=GM/h^2。これを(10)に入れて
(11)d^2u/dθ^2+u=GM/h^2
この微分方程式を解くと軌道の方程式
(12)r=l/(1+εcosθ) (ε>0,l=h^2/GM)
が得られます。εは離心率で楕円はε<1。
相対運動のエネルギーをEとするとE=T+Uですから
E=(1/2)m(r'^2+r^2θ'^2)+GmM/r (m:換算質量) (7)を代入して整理すると
(13)(m/2)r'^2=(Er^2+GmMr-(1/2)mh^2)/r^2
ところでr'はrが極大(θ=π),極小(θ=0)のときにr'=0となりますから,(12)よりrmax=l/(1-ε),rmin=l/(1+ε)
(13)で左辺を0とした場合,右辺のrの2次方程式はrmax,rminの2根を持つことになりますから,根と係数の関係より
(14)rmax+rmin=-GmM/E,rmax・rmin=-mh^2/2E
これから
E=-(GmM/2l)(1-ε^2)が得られます。
ちょっとゴタゴタしましたが力学のテキストを参照しながらフォローしてみてください。尚,山内恭彦他編大学演習力学(裳華房)も参考になると思います。
    • good
    • 0
この回答へのお礼

まだ大学物理をはじめたばかりなので、ラグランジアン等は習っていないのです・・。力学のテキスト参考にしてみます。
 有難うございました。

お礼日時:2006/08/20 12:54

高校レベルでの話でしょうか?



それより上のレベルの話であれば…
楕円軌道自体が分かっているのであれば、
軌道上での速度ベクトルの方向は算出可能なので、
早さが分かれば、そこから角運動量を出すことが
可能なはずです。
速度の絶対値は、全エネルギーから算出が可能です。
全エネルギーに関しては、楕円軌道上の点によって
ポテンシャルが算出可能なので、そこから
求めることが可能です。

どちらにしろ初期状態の情報が無いので決定できない
パラメーターが生じます。

楕円の焦点を求める方法は
(sqrt(a^2-b^2),0)
で、
軌道上の点は角速度をwとして
(1/a*coswt,1/b*sinwt)

軌道上の速度ベクトルは
w(-1/a*sinwt,1/b*coswt)


角運動量を求めることが出来る…

参考URL:http://www.crossroad.jp/mathnavi/kousiki/zutohou …
    • good
    • 0
この回答へのお礼

角運動量の求め方は判りました。
 有難うございます。

お礼日時:2006/08/20 12:55

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qポテンシャルエネルギーから力を求めるのになぜ偏微分

こんにちは、力学を勉強しております。重力やばねの力が保存力である、ということを学ぶ際に、ポテンシャルエネルギーUを習いました。そして、このポテンシャルエネルギーを位置で微分して力を求める、という次の式が登場しました (~はベクトル表示のための矢印とお考え下さい)。

~F = -(∂U / ∂x) ~i - (∂U / ∂y) ~j - (∂U / ∂z) ~k .... (1)

ここで、なぜ偏微分なのでしょうか。

~F = -(dU / dx) ~i - (dU / dy) ~j - (dU / dz) ~k .... (2)

というように通常の微分では問題になるのでしょうか。

たとえばバネの ポテンシャルエネルギーはU = (1/2)k x^2なので
これを上式(1)のように微分すれば、F = -kxとなります。重力にしても同様に求まります。
ただ、(2)式を使っても、ばねの力も重力も求まってしまいます。

偏微分を使っているからには、その理由があると思うのですが、私の持っているどの教科書にもその説明がなく、突如として偏微分が示されているだけでして悩んでおります。

どうぞ宜しくお願いします。

こんにちは、力学を勉強しております。重力やばねの力が保存力である、ということを学ぶ際に、ポテンシャルエネルギーUを習いました。そして、このポテンシャルエネルギーを位置で微分して力を求める、という次の式が登場しました (~はベクトル表示のための矢印とお考え下さい)。

~F = -(∂U / ∂x) ~i - (∂U / ∂y) ~j - (∂U / ∂z) ~k .... (1)

ここで、なぜ偏微分なのでしょうか。

~F = -(dU / dx) ~i - (dU / dy) ~j - (dU / dz) ~k .... (2)

というように通常の微分では問題になるのでしょうか。

たと...続きを読む

Aベストアンサー

まず、微小変位について仕事がどう書かれるかはわかっていますか?
仕事は一次元運動では力×移動距離ですが、三次元運動では力のベクトルと変位ベクトルの内積になります

ΔW = F・Δr (F, Δrはベクトル)

次に、位置エネルギーの定義ですが、位置エネルギーは仕事の符号を変えたものですから、
この微小変位による位置エネルギーの変化分は

ΔU = - ΔW = - F・Δr = - ( Fx Δx + Fy Δy + Fz Δz ) (*)

ここまでよろしいでしょうか?

次は純粋に数学の問題で、U(x+Δx,y+Δy,z+Δz)をテーラー展開して1次までとると

U(x+Δx,y+Δy,z+Δz) = U(x,y,z) + (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz

ここで

ΔU = U(x+Δx,y+Δy,z+Δz) - U(x,y,z)

と定義すれば

ΔU = (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz

が成り立ちます。つまり、1次までの微小変化であれば、

y,zを止めてxだけ変えたときの変化分、
x,zを止めてyだけ変えたときの変化分、
x,yを止めてzだけ変えたときの変化分、

の合計が全体の変化分に等しいという関係が成り立ちます。
これが全微分ではなく編微分を使う理由です。


この式は

grad U = (∂U/∂x, ∂U/∂y, ∂U/∂z )
Δr = (Δx, Δy, Δz)

というベクトルを導入すれば内積を使って

ΔU = grad U ・ Δr

と書くことができます。

この関数U(x,y,z)を位置エネルギーだとすると、ΔUは微小変位Δr = (Δx, Δy, Δz)に対する位置エネルギーの変化分となりますから、上の(*)の式に等しく

ΔU = grad U ・ Δr=ΔU = (∂U/∂x)Δx+ (∂U/∂y)Δy+ (∂U/∂z)Δz
   =- F・Δr = - ( Fx Δx + Fy Δy + Fz Δz )

この二つの式を見比べれば

F = - grad U

成分表記では

Fx = -∂U/∂x
Fy = -∂U/∂y
Fz = -∂U/∂z

となります。

>というように通常の微分では問題になるのでしょうか。

3次元の調和振動子を考えて見ます。その位置エネルギーは

U(x,y,z) = (1/2)k (x^2 + y^2 + z^2)

これを通常の微分をとるとすると、物体は3次元空間の中をある軌道で運動していますから、xの変化と同時にyもzも変化します。つまり、yとzはxの関数と考えられるので

dU/dx = d/dx [ (1/2)k (x^2 + y(x)^2 + z(x) ^2) ]
= k x + k y(x) dy/dx + k z(x) dz/dx

となり、x方向の力kxを導きません。

まず、微小変位について仕事がどう書かれるかはわかっていますか?
仕事は一次元運動では力×移動距離ですが、三次元運動では力のベクトルと変位ベクトルの内積になります

ΔW = F・Δr (F, Δrはベクトル)

次に、位置エネルギーの定義ですが、位置エネルギーは仕事の符号を変えたものですから、
この微小変位による位置エネルギーの変化分は

ΔU = - ΔW = - F・Δr = - ( Fx Δx + Fy Δy + Fz Δz ) (*)

ここまでよろしいでしょうか?

次は純粋に数学の問題で、U(x+Δx,y+Δy,z+Δz)をテーラー展開して1次までとる...続きを読む

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q物理量に対数をとると無次元量になる理由

実験結果などを解析する際に、絶対温度T[K]や時間t[sec.]などに自然対数をとることがあります。
例えば、ln Tやln tとしますが、これらの単位はありません(無次元)。以前から気になっていたのですが、なぜ対数をとると無次元量になるのでしょうか?
ご存知の方、教えてください。よろしくお願いします。

Aベストアンサー

単位のついている量の対数はとれません。
ln (1+x)=x-x^2/2+x^3/3-x^4/4+x^5/5+・・・
という公式からわかるよう、xに単位がついているとすると
右辺は意味を持たなくなります。(次元の異なる量を
足し合わせることは無意味。)

もしln Tやln tという記述が本当にあるならば、それは
ln(T[K]/1[K])やln(t[sec]/1[sec])というように
単位量で割った値の対数をとっていると理解すべきと思います。
すなわち、もとから無次元量の対数をとっているのです。

Q角運動量保存の法則を中学生にもわかるように教えてください

角運動量保存の法則がいまいちよくわかりません。
http://ja.wikipedia.org/wiki/%E8%A7%92%E9%81%8B%E5%8B%95%E9%87%8F%E4%BF%9D%E5%AD%98%E3%81%AE%E6%B3%95%E5%89%87
ここで説明されているフィギュアスケートの例もよくわかりません。
わかりやすく教えてください。厳密な意味ではなくて、なんとなくこんな
意味だよって感じで教えてくれるとうれしいです。よろしくお願いします。

Aベストアンサー

角運動量保存則は、
角運動量:L、慣性モーメント:I、角速度:ωとすると、
L = I・ω = 一定
で表されます(定義)。

慣性モーメントは、
I=∫(r^2)dm
で表されますが、中学生相手だと簡単のために
I=m・r^2 (m:質量 , r:回転半径)
などとしたほうが良いでしょう。

この式より、
rが小さくなれば、Iは小さくなり、
rが大きくなれば、Iは大きくなる、ことが分かります。

さらに角運動量 「L= I・ω =一定」 のため、

Iが小さくなれば(rが小さくなれば)、ωは大きくなり、
Iが大きくなれば(rが大きくなれば)、ωは小さくなる。

フィギュアスケートの選手が手を上に上げて(rを小さくして)、回転すると、高回転となる(ωが大きくなる)わけです。
この程度なら中学生でも理解できるのではないでしょうか?

Q円盤の慣性モーメントが求めれません。

面密度ρの一様な円盤の中心周りの慣性モーメント

J=(mR^2)/2
となるのですがどうしてなるのか分かりません。

よろしくお願いします!

Aベストアンサー

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

で求まります。実際にやってみます。
dA=π(r+dr)^2-πr^2
=π(r^2+2rdr+dr^2-r^2)
=π(2rdr+dr^2) (5)

となるんですが、drはめっちゃ小さいんで2乗の項は無視します。
dA=2πrdr (6)

ですね。この式(6)を式(3)に代入します。
dm=2πρrdr (7)

式(7)を式(2)に代入します。
J=∫r^2・2πρrdr
=2πρ∫r^3dr (8)

見にくいんで書きませんでしたが、rの積分区間は0~Rです。
回転軸から端っこまでですから♪
積分を実行すると、
J=(πρR^4)/2 (9)

になります。
ここで、円盤の質量mは次式で与えられます。
m=πρR^2 (10)

式(10)を式(9)に代入すれば出来上がりです♪
J=(mR^2)/2 (11)

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

...続きを読む

Q電子のエネルギーについて

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?

( i)ポテンシャルが存在せず、Eを運動エネルギーと考えた場合・・・
E = hν = 1/2 mv^2
従って、
p = h / λ = hν / v = 1/2 mv ??
これは運動量の定義と矛盾します。

(ii)ポテンシャルが存在せず、Eを運動エネルギー+静止エネルギーと考えた場合(電子の速度は光速に比べて十分遅いので)・・・
E = mc^2 + 1/2 mv^2 ~ mc^2 = hν
従って、
p = h / λ = hν / v = mc^2 / v ??
これも運動量の定義と矛盾します。

つまり、電子のように遅い粒子では、E = hν と p = h / λを同時に満たすことができないように思えるのです。

数多くある量子力学の本でも逃げている部分であり、難解な質問かとは思いますが、ご存知の方がいらっしゃればご回答お願いします。

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレ...続きを読む

Aベストアンサー

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度により表されます。群速度Vgは、角速度ωを波数ベクトルの大きさkで微分したものです。つまり、Vg=dω/dk となります。エネルギーと運動量は、ωとkを使うと、E=h'ω、p=h'k となりますから(h'=h/2π)、Vg=dE/dp となります。非相対性理論の範囲では、E=p^2/2m ですから、Vg=vとなります。相対性理論の範囲では、E^2=p^2c^2+m^2c^4ですから、これもVg=vとなります。

 それでは、質問者様の質問に回答します。
1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

 電子のエネルギーは、静止質量エネルギーを含んだものです。シュレーディンガー方程式のエネルギーは、ご指摘のとおり、静止質量エネルギーは含んでおりません。このため、相対論的量子力学で扱うエネルギーとシュレーディンガー方程式で扱うエネルギーとでは、静止質量エネルギーの分だけ違いがあるということになります。これは(ディラックによれば)、物理的に影響のない項目です。なぜなら、ハミルトニアンは、実の定数分の不定さがあるからです。

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?
 
 既に上で述べたように、λν=v ではなく、E=hν と p=h/λから位相速度が決まります。ド・ブロイはなぜこの式を適用することができると考えたのか、については、ド・ブロイ自身の論文は見ていませんが、ディラックによれば、相対論的に不変な性質から出発してこの考えに至ったようです。つまり、エネルギーと運動量は4次元ベクトル(E/c,p1,p2,p3)を成します。波数ベクトルについても、(ω/c,k1,k2,k3)は4次元ベクトルとなります。どちらも4次元ベクトルであることから、エネルギー運動量を波で表すということは、光だけに限定されるものではなく、ほかの物質であっても成り立つものと考えた訳です。

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qタンジェントとアークタンジェントの違い

タンジェントとアークタンジェント、サインとアークサイン、コサインとアークコサインの違いをすごく簡単に教えてください。

Aベストアンサー

タンジェントやサイン、コサインは、角度に対する関数です。
例えば
 tan60°=√3
のような感じで、角度を入力すると、値が出てきます。

逆に、アークタンジェントなどは、数値に対する関数です。
 arctan√3=60°
などのように、数値を入力すると角度が出てきます。

そして、タンジェントとアークタンジェントの関係は、
springsideさんも書いてありますが、逆関数という関係です。
逆関数というのは、原因と結果が逆になるような関数です。
例えば、
  45°→タンジェント→1
  1  →アークタンジェント→45°
のように、「1」と「45°」が逆の位置にありますよね?
こういう関係を、「逆関数」というんです。

どうでしょう、わかりましたか?

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Q【応用解析】特異点 留数 位数について

特異点、留数、位数の求め方(考え方)を教えてください。
例えば
f(z)=1/(z*sinz)
についてその3つの解説お願い特異点、留数、位数の求め方を教えてください。
自分で考えたのは
特異点はz=0,sinz=0→z=nπ(nは整数)(これもあやふや)
位数はz=0は一次なので1位、sinz=nπはよく分からない
留数は1位とk位(k≧2)の場合の公式があるのでそこに入れるらしい(あやふや)
こんな感じです。
宜しくお願いします。

Aベストアンサー

特異点・留数・極の定義からもう一度見直しましょう。そうすればわかるはずです。

こちらの関数
f(z)=1/(z*sinz)
についてですが、分母零点が特異点になるのはおわかりのようですので、大体いいと思います。しかしこれは複素関数なので、
sinz = 0 (zは複素数)
を解くときに、nπ(nは整数)以外の零点が存在しないことを確認しなければなりません。オイラーの公式を使って、sinzを指数関数で表記すればできます。

極におけるその位数とは、特異点で複素関数をローラン展開したとき、その展開がマイナス何乗の項まで存在するか、ということです。位数が無限大になる「真性特異点」というものもあります。
したがって、この関数はz=0においては1位の極ではありません。もういちどよく考えてください。

留数とは、特異点のローラン展開におけるマイナス1乗の係数のことです。求めたい留数においてそれが何位の極なのかがわかれば、その計算方法も考えればわかるはずです。
留数がわかれば複素積分に応用できるので、留数は複素関数において重要な考えの一つです。

特異点・留数・極の定義からもう一度見直しましょう。そうすればわかるはずです。

こちらの関数
f(z)=1/(z*sinz)
についてですが、分母零点が特異点になるのはおわかりのようですので、大体いいと思います。しかしこれは複素関数なので、
sinz = 0 (zは複素数)
を解くときに、nπ(nは整数)以外の零点が存在しないことを確認しなければなりません。オイラーの公式を使って、sinzを指数関数で表記すればできます。

極におけるその位数とは、特異点で複素関数をローラン展開したとき、...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報