こんにちわ。Definite Intergal(日本語でわからない)の問題で質問です。でも方程式の書き方がPCだとどうかけばいいのか謎なので頑張ってかいてみます。

fは偶数、gは奇数、h(x)=f(x)+g(x)

∫ここに書く上の数字(maximum)5、下の数字(minimum)0 f(x)dx=8

∫ここに書く上の数字(maximum)2、下の数字(minimum)0 g(x)dx=3

∫ここに書く上の数字(maximum)0、下の数字(minimum)-2 h(x)dx=-4

ここからが問題

a) ∫ここに書く上の数字(maximum)5、下の数字(minimum)-5 g(x)dx=?

b) ∫ここに書く上の数字(maximum)5、下の数字(minimum)-2 f(x)dx=?

c) ∫ここに書く上の数字(maximum)0、下の数字(minimum)-2 [3f(x)-5g(x)]dx

d) ∫ここに書く上の数字(maximum)5、下の数字(minimum)-5 h(x)dx=?

e) f(x) for -2≤x≤2 の平均値は?

このような問題です。書き方が分かればいいやすいのに。。。

A 回答 (2件)

定積分ですね。


>fは偶数、gは奇数
これは f(x)は偶関数,g(x)は奇関数 ということですよね。
>∫ここに書く上の数字(maximum)5、下の数字(minimum)0 f(x)dx=8
いちいちこう書くのは面倒なので、
∫[0~5]f(x)dx = 8 と書くことにします。

条件は
∫[0~5]f(x)dx = 8 (1)
∫[0~2]g(x)dx = 3 (2)
∫[-2~0]h(x)dx = -4 (3)
ですね。
分かるのだけ書きます。
a)∫[-5~5]g(x)dx = 0 (∵g(x)は奇関数なので)

b)∫[-2~5]f(x)dx = ∫[-2~0]f(x)dx +∫[0~5]f(x)dx です。
条件(3)から、
∫[-2~0]h(x)dx = ∫[-2~0]f(x)dx + ∫[-2~0]g(x)dx = -4
条件(2)から、g(x)は奇関数なので
∫[-2~0]g(x)dx = -∫[0~2]g(x)dx = -3
よって、∫[-2~0]f(x)dx = -4 -(-3) = -1
これと条件(1)から
∫[-2~5]f(x)dx = -1 + 8 = 7

d)∫[-5~5]h(x)dx = ∫[-5~5]f(x)dx + ∫[-5~5]g(x)dx
= 2∫[0~5]f(x)dx + 0 (∵f(x)は偶関数、及びa)より)
 = 2×8 = 16

e)ですが、なんか文字化けしているようですが。
    • good
    • 0

c)ですが、


∫[-2~0]{3f(x)-5g(x)}dx
=∫[-2~0]{3f(x)}dx + ∫[-2~0]{-5g(x)}dx
= 3∫[-2~0]f(x)dx - 5∫[-2~0]g(x)dx
= 3×(-1) - 5×(-3) = 12  (∵b)の計算途中の内容から)
ですね。

これらは
a<c<b,k を定数として
・∫[a~b]{F(x)+G(x)}dx = ∫[a~b]F(x)dx +∫[a~b]G(x)dx
・∫[a~b]{kF(x)}dx = k∫[a~b]F(x)dx
・∫[a~b]F(x)dx = ∫[a~c]F(x)dx + ∫[c~b]F(x)dx
さらにa>0として
・∫[-a~a]F(x)dx = 2∫[0~a]F(x)dx (F(x)が偶関数のとき)
・∫[-a~a]F(x)dx = 0 (F(x)が奇関数のとき)
という公式を使ってます。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dx の証明

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

ヒント
fに対する不足和、過剰和を、それぞれ、 s(f,Δ)、S(f,Δ)というふうに書けば、s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ) に注意せよ。

同書の略解
分割Δの小区間[a(i-1),a(i)]における f+g,f,g の下限をm(i),n(i),p(i)とすれば m(i)≧n(i)+p(i)、ゆえにs(f,Δ)+ s(g,Δ)=Σn(i)(a(i)-a(i-1)) + Σp(i)(a(i)-a(i-1))≦Σm(i)(a(i)-a(i-1))=s(f+g,Δ)同様にS(f+g,Δ)≦S(f,Δ)+ S(g,Δ) だから、inf(S(f,Δ))=sup(s(f,Δ))、inf(S(g,Δ))=sup(s(g,Δ))なら、inf(S(f+g,Δ))=sup(s(f+g,Δ))=、sup(s(f,Δ))+sup(s(g,Δ))

となっていますが、最後の等式がどうしても出てきません(その前までは理解できました)。行間を埋めていただけるとありがたいです。

s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)

からそれぞれの辺のsup、infを考えるとできるのではないかとも思われるのですが、どうしてもわかりませんでした。

よろしくお願いいたします。

ある本(微分積分学)を読んでいて、次のような定理の証明を考えています。

有界なf(x),g(x)が[a,b]でリーマン積分可能であるとき、f(x)+g(x)もそうであり、∫[a,b](f(x)+g(x))dx=∫[a,b]f(x)dx + ∫[a,b]g(x)dxが成り立つ。

定積分に関するごく初歩的な定理ですが、これを、上限と下限の不等式を使って証明しようとしているのですが、うまくいきません。ヒントには次のようになっています。

#以下の記述ですが、上の本は記号の表示に誤りを含んでいるように思われましたので正しい表示に直してあります。

...続きを読む

Aベストアンサー

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i-1))+inf(f)(xi-yj)の方が大きくなる。
sup(f)では逆に小さくなる。
(グラフを描いてみればわかると思います)

すなわち、分割を細かくすると、不足和は大きく、過剰和は小さくな
る。

なので、s(f,Δ1)≦s(f,Δ3)、s(g,Δ2)≦s(g,Δ3)
辺々足して、
s(f,Δ1)+s(g,Δ2)≦s(f,Δ3)+s(g,Δ3)
≦s(f+g,Δ3)≦sup(s(f+g,Δ))←これは、あらゆる分割Δに対するsup
という意味で使っているので、Δは分割の変数のような記号と思って
ください。

このように、別個の分割に対する不等式が示せたので、
s(f,Δ1)、s(g,Δ2)それぞれであらゆる分割を考えて、
sup(s(f,Δ))+sup(s(g,Δ))≦sup(s(f+g,Δ))

infのほうも同様です。

本の記述はわかりませんが、同じ分割に対してのみsup,infを考えてい
たのでは、やや曖昧な気がします。

しかし、私の大学時代の関数論が専門の教授は、一松信先生は大先生
だと絶賛していましたが・・・
おそらく、本の中で論理は通っているものと思われますが・・・

おそらく、同じ分割Δに対して、不等式、
s(f,Δ)+ s(g,Δ)≦s(f+g,Δ)≦S(f+g,Δ)≦S(f,Δ)+ S(g,Δ)
を考えているからわかりにくいのだと思います。

分割Δ1と分割Δ2を合体させた分割をΔ3とします。
Δ1の分割点x1,…,xmと、Δ2の分割点y1,…,ynを合わせた分割点
x1,…,xm,y1,…,ynによって[a,b]を分割するのがΔ3という意味。

小区間[x(i-1),xi]が2つの小区間[x(i-1),yj]と[yj,xi]に分割された
とすると、小区間[x(i-1),xi]でのinf(f)(xi-x(i-1))よりも、
2つの小区間[x(i-1),yj]と[yj,xi]での
inf(f)(yj-x(i...続きを読む

Q∫{(g(x)+h(x)}dx = ∫g(x)dx + ∫h(x)dx は必ずなりたつ?

∫{(g(x)+h(x)}dx = ∫g(x)dx + ∫h(x)dx は必ずなりたつ?

高校数学の範囲としてお聞きします。

∫{(g(x)+h(x)}dx = ∫g(x)dx + ∫h(x)dx は必ずなりたちますか?

また、その理由もお教えください。(なんとなく感覚的には成り立つように思えるのですが、実感(というか理解)できてないです)

以上、お手数をおかけして恐縮ではございますが、よろしくお願い申し上げます。

Aベストアンサー

文字通りの意味ですけれど.
左から右へ行こうとしても, g(x) と h(x) に関して, 有界性すら保証されていないわけですよね.

Q「c=10^-10でfは全ての実数で連続でx>0で正値をとる時,∫[c..∞]f(x)dxが収束するならばlim[x→∞]f(x)=0」

「c=10^-10でfは全ての実数で連続でx>0で正値をとる時,
∫[c..∞]f(x)dxが収束するならばlim[x→∞]f(x)=0」
の真偽判定問題です。

偽となる反例として
f(x)が底辺が1/n^2の二等辺三角形の側辺を辿るような
ジグザクの折れ線のグラフ(この時lim[x→∞]f(x)は振動)なら
全二等辺三角形の総和はΣ[n=1..∞]1/2n^2で収束と思ったのですがこれはx>0で正値をとる事に
反してしまいます。
やはり,この命題は真となるのでしょうか?

Aベストアンサー

過去に同じ質問がありました。

参考URL:http://oshiete1.goo.ne.jp/qa3653990.html

Qd/dx・f(x)=g(x)の両辺にdxをかけたらd・f(x)=dx・g(x)になる?

d/dx・f(x)=g(x)の両辺にdxをかけたらd・f(x)=dx・g(x)になるのでしょうか?
左辺も右辺も何か変な感じがしますが。
それとも、d/dxってひとまとまりなんでしょうか?

Aベストアンサー

あなたがどの段階での数学を知ってるかに依存します.
高校から大学初年くらいでしたら
d/dx は微分を表す記号だと思って「ひとかたまり」だと
思うほうがよいです
ただし,こういう分数の形にしてあるのは
積分を扱うときに置換積分の公式が覚えやすくなるからです.

数学専攻,もしくは数学を専攻しようというように思ってるなら
df/dx は「分数」と同じようなものだと思っておいた方が
よいかもしれません.
「微分形式dx」と「外微分d」と呼ばれるものが定義され
これに対していろいろやっていくんですが,
関数fに対して外微分 d を作用させるというのを
df = f' dx と定めます.
したがって,f' = df/dx = g ならば df =g dx という
計算が成立します.

微分係数の「係数」というのは df = f' dx で
「微分」形式dxの「係数」が f' だという風にも
解釈できます.

Q(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

(d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。
これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。
そこで、
(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy
が成立するための必要十分条件を教えていただきたいと思っています。
もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

Aベストアンサー

積分と微分の順序交換については
必要十分条件は一般にはありません.
ただし,十分条件は知られています.

リーマン積分の範囲だと
f(x,y)が連続で,f_y(x,y)も連続くらいの条件があれば
d/dy∫f(x,y)dx = ∫f_y(x,y)dx
くらいがいえるはずです.
#積分区間とかは省きます.

その十分条件で一番便利だろうと思われるものは
ルベーク積分の言葉で記述されます.
興味があれば,「ルベーク積分」の本を
追いかけてください.
・ルベークの有界収束性定理
・L^1空間
というようなものが理解できれば,順序交換の定理は理解できます.


このカテゴリの人気Q&Aランキング

おすすめ情報