【最大10000ポイント】当たる!!質問投稿キャンペーン!

統計解析の素人なため、質問自体が根本的に問題かも知れませんが、
ご教授いただけますでしょうか。
-----------------------------------------------------
7年間の観察期間で、2群に分けて特定の検査を実施しました。
それらのデータを集計して算出した例数を用いて
それぞれ差を検定したいのですが、
Cochran-Mantel-Haenszel法が適していると聞きました。

ある部門で計算をしてもらい、結果を算出してもらいました。
漸近有意確率 (両側検定)にて、ある特定の検査項目のp値に
「*:p≦0.05」が出現したのですが、どのような説明ができるのか
教えていただけますでしょうか。

結果------------------------+
カイ2乗 5.621
自由度 1
漸近有意確率 (両側検定) 0.021
+----------------------------

質問方法と、情報の提示に問題があるかもしれませんが、
ご協力お願い申し上げます。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

簡単に結果から答えを言います。



「2群はある特定の検査項目に対して関係がある。」という答えになります。

※検査項目もある・なしとかの2群のはずです。

※自由度1のカイ2乗分布の5.621のところ(より左側)の面積が0.021です。

※「*:p≦0.05」有意水準のことで、0.05%以下の値なら帰無仮説=2群は独立である(関係ない)を棄却したことになります。
つまり、独立でない。関係がある。ということがいえます。
    • good
    • 0
この回答へのお礼

ご回答どうもありがとうございました。
大変助かりました。

お礼日時:2006/08/30 11:25

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

QT検定とMann-WhitneyのU検定の使い分け

ある2郡間の平均値において、統計的に有意な差があるかどうか検定したいです。ちなみに、対応のない2郡間での検定です。

T検定を行うには、ある程度のサンプル数(20以上程度?)があった方が良く、サンプル数が少ない場合には、Mann-WhitneyのU検定を行うのが良いと聞いたのですが、それは正しいのでしょうか?
また、それが正しい場合には実際にどの程度のサンプル数しかない時にはMann-WhitneyのU検定を行った方がよろしいのでしょうか?
例えば、サンプル数が10未満の場合はどうしたらよろしいのでしょうか?

また、T検定を使用するためには、正規分布に従っている必要があるとのことですが、毎回正規分布に従っているか検定する必要があるということでしょうか?その場合には、コルモゴルフ・スミノルフ検定というものでよろしいのでしょうか?

それから、ノンパラメトリックな方法として、Wilcoxonの符号化順位検定というものもあると思いますが、これも使う候補に入るのでしょうか。

統計についてかなり無知です、よろしくお願いします。

Aベストアンサー

結局ですね、適切な検定というのは適切なp値が得られるということなんですよ。適切なp値というのは第1種の過誤と第2種の過誤をなるべく低くするようにする方法を選ぶということなのですね。

従来どおりの教科書には「事前検定をし、正規性と等分散性を仮定できたら、、、」と書いていありますが、そもそも事前検定をする必要はないというのが例のページの話なのです。どちらが正しいかというと、どちらも正しいのです。だから、ある研究者はマンホイットニーのU検定を行うべきだというかもしれませんし、私のようにいかなる場合においてもウェルチの検定を行う方がよいという者もいるということです。

ややこしく感じるかもしれませんが、もっと参考書を色々と読んで分析をしていくうちにこういった内容もしっくり来るようになると思います。

Q3群の対応のある検定についてお願いします。

3群の対応のある検定についてお願いします。

3つの薬の差を、同一対象で調べています。
文献では多重検定ではなく、
まず3群間で比較し、差があるものだけ各群間で比較を行っているようです。色々調べて、

・間隔(血圧値・正規分布)→3群(one-way ANOVA)→2群間(paired-t)
・順序(副作用程度1.2.3段階)→3群(フリードマン検定)→2群間(ウィルコクソンの符号付順位検定)
・名義(副作用あり・なし)→3群(コクランのQ検定)→2群間(マクネマー検定)

と考えたのですが、文献で対応あるなしにかかわらず、
Wilcoxon順位和検定やCochran-Mantel-Haenszel検定、ビアソンχ二乗, Fisher exact testなどが使われていて自信がなくなりました。

上の方法でよいか、アドバイスお願いします。

Aベストアンサー

こんばんわ。

>間隔尺度でもフリードマン、ウィルコクソンが望ましいのは、
>正規性・等分散性が仮定できない時と考えて良いでしょうか。
そうですね。しかし厳密には上記のノンパラの検定は位置が異なるかを検討するものですので、本質的な不等分散は望ましくありません。外れ値に起因する数値上の不等分散なら問題ありませんが。対応のあるデータでそれほど不等分散になることもないかもしれませんね。そもそも本質的に不等分散なデータを比較していいのかという考え方もあります。

>あと、マクネマー検定で4以下の項目があるのですが、
>カイ二乗の時のFisherのように、二項検定などに変更する必要があるのでしょうか。
そうですねぇ。。各セルがいくら以下ならばexactな検定をしなければいけないという明確な基準はないかもしれませんが、二項検定のほうが無難かも知れませんね。二項検定のほうが保守的でしょうからクレームをつけられることはないと思います。


人気Q&Aランキング