顕微鏡には色々ありますが違いが分かりません。
次の顕微鏡について教えてください。

1.光学顕微鏡
2.実体顕微鏡
3.金属顕微鏡
4.偏光顕微鏡
5.CCD

このQ&Aに関連する最新のQ&A

A 回答 (3件)

 


  >1.光学顕微鏡
 
  「光学顕微鏡」というのは、どういう光を使うか(透過光か反射光か、または可視光か赤外線・紫外線などか)は別に、「光」を使って、対象を観察する拡大装置=顕微鏡のことで、以下の2から4までは、すべて光学顕微鏡です。光学顕微鏡でないのは、「電子顕微鏡」とか、「X線顕微鏡」などで、これらは、肉眼では見ません。写真にとって、それを見ます。赤外線や紫外線の顕微鏡も、肉眼では見ませんから、光学顕微鏡とは言わないかも知れません。普通、光学顕微鏡というと、対象を透過した光のパターンを見ます。小さな生物や、小さな構造を見るのに適していますが、光が透過しにくい場合は、スライスして薄い形にし、プレパラートにして、観察します。プランクトンや微生物や植物のスライス構造などは、透過光でも十分よく見えます。この場合は、倍率200倍から400倍ぐらいです。あまり倍率を上げると、視野が暗くなり、また解像度が悪くなりますから、あまり大きな倍率はないのです。
  
  >2.実体顕微鏡
 
  顕微鏡は、肉眼で見る場合、対物レンズ・接眼レンズ共にそれぞれ一つしかないもの(従って片目で見ます)の他に、「双眼顕微鏡(立体顕微鏡)」と言って、接眼レンズが二つあり、両目で対象を見る顕微鏡があります。これだと、対象物の立体的な姿が見えます。実体顕微鏡は普通、反射光を見ます。小さな花粉とか、小さな生物など、立体構造が分かるとよい対象を見るのに使い、あまり倍率は高くありません。10倍ぐらいから、100倍ぐらいまでです。
 
  >3.金属顕微鏡
 
  これは、わたしは使った経験がないのですが、金属の表面構造などを、反射光によって、立体的に見る顕微鏡のようです。単眼顕微鏡でも、金属表面は、反射光で観察できますが、双眼顕微鏡にすれば、金属の構成結晶の構造も見えます(その場合、なめらかな表面ではなく、結晶粒が識別できるように、幾分、表面を腐食処理などしたものを対象に使うのでしょう。倍率は、光学顕微鏡と同じぐらいです)。
 
  >4.偏光顕微鏡
 
  これは、透過光源に偏光を使い、接眼レンズに偏光ガラスで造ったレンズを使った顕微鏡で、光学顕微鏡と同じものですが、違うのは、対象を偏光が通過する際、対象に偏光性があると、偏光角度に違いが出てきて、普通の光学顕微鏡では分からない、対象の偏光構造が分かるのが違います。石や金属などを、薄くスライスして更に薄く磨き、光が通過するぐらいの薄さにして、この顕微鏡で見ると、接眼レンズを、光源の偏光と同じ位相にすると、何も偏光作用のない部分は、そのまま白く光が透過しますが、偏光性のある結晶や鉱物粒の部分は、偏光によって、色が付いて見えるのが普通です。接眼レンズを回すと、視野の対象が、七色に色が変化して行きます。光源偏光と接眼レンズの偏光角度を直交させると、何もない視野は真っ暗ですが、偏光機能のある対象は、色々な色で光を通過させて見えます。偏光の特性は、鉱物や金属の結晶ごとで決まっているので、また、接眼レンズを回転させて得られる色の変化や、焦点をぼかすとどうなるか等の様子などから、鉱物の種類や金属の結晶の種類や、その組成が大体判断できます(鉱物や金属でなくとも、ポリマーなど、偏光特性を持つ対象なら、或る程度、偏光特性で、対象が何かを判断できます)。
 
  >5.CCD
 
  これは、以上の色々な顕微鏡に、CCDカメラを接眼レンズ部分に取り付けて、外のモニターなどに映像が映るようにした顕微鏡で、顕微鏡自体としては、解くにこういう顕微鏡がある訳ではありません。ただ、赤外線や紫外線だと、写真に撮らないと分からなかったのが、CCDだと、そのような光も肉眼と違い感受できるので、肉眼で見える可視光に表現してモニターに表示すればよいことになります。
  
  以下の参考URLに、非常に大まかな顕微鏡の種類の説明があります:
  >光測定
  >http://nohmi.ns.saga-med.ac.jp/kaisetu/iryou_kou …
 
  また、以下のURLは、生物用顕微鏡の総合用語集です:
  >生物顕微鏡用語集/glossary
  >http://user.ecc.u-tokyo.ac.jp/~ckam/LM_gloss.htm
  

参考URL:http://nohmi.ns.saga-med.ac.jp/kaisetu/iryou_kou …
    • good
    • 0

3.金属顕微鏡


は、私どもの商売道具だったりしますので良く存じております。
普通の光学顕微鏡が透過光を見るのに対して、反射光で見るものです。
顕微鏡の中にハーフミラーが仕込んであって、観察用の光軸にそって、途中から
照明用の光を割り込ませます。
光は試料表面に垂直に当たって反射するので、良く研磨された金属試料では
視野全面が明るく見えます。
実際は、研磨した試料表面を酸などで若干腐食して観察します。
この腐食によって凸凹ができ、特に結晶粒界などが腐食されてへこむと、その
部分は光に垂直でなくなるので、光が返ってきません。
つまり、暗く見えます。

このように、光軸に沿った照明によって、表面の凹凸を敏感に検出することが
できる顕微鏡です。

2.実体顕微鏡 について若干の補足
実体顕微鏡は、顕微鏡という名前が付いていますが、虫眼鏡の親玉みたいなものです。
品物までの距離をかなり離して見ることが出来ます。
普通は右目と左目で立体視できるようになっています。
    • good
    • 2

使い方の観点から.


1.微生物や生物組織など光を通すものを対象。倍率は高くても400-800倍
2.生きた生物など光を通さないものを大正。倍率は100倍程度(物によっては光学顕微鏡程度の倍率もあり)
3.実体顕微鏡の亜種。使った経験無し(私金属屋ではないもので)。
4.粘度鉱物など.光を通すが偏光をおこすぶしつの観察用。
5.人の目で見ないでCCDカメラを使う顕微鏡。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電子顕微鏡と光学顕微鏡、それぞれの長所・短所

顕微鏡には大別すると電子顕微鏡と光学顕微鏡がありますが、それぞれどのような長所・短所を持っているのですか? 倍率などでは圧倒的に電子顕微鏡のほうが優れているはずなのに、光学顕微鏡も今日まで現役を守り通しているということはなにか電子顕微鏡には無い優れた点があると思うのですが…。装置が複雑であるかそうでないかを起因とする幾つかの違いはだいたい分かるのですが。よろしくお願いします。

Aベストアンサー

実際に使う分野では、小さなものが見られるほどいいとは限りません。
たとえば、ガン細胞をみたい時に、ガン細胞を作っている分子や原子がみえちゃったら、その細胞全体がどういう恰好してるのか見えないですよね。

その分野によって、必要な倍率があります。
また、電子顕微鏡では色はないですね。
いまあげたガン細胞の検査なんかでは、色は重要な意味を持ちます。

ある程度低い倍率で見なければ見えないものもあるので、これから先も電子顕微鏡も光学顕微鏡も共存していくことでしょう。

鉱物学なんかでは、数十倍の顕微鏡じゃないと役に立たないなんてのもあるんですよ。

また、位相差顕微鏡、シュリーレン干渉顕微鏡、偏光顕微鏡といった、光の特性を利用した顕微鏡は電子顕微鏡では不可能です。(理論的にはできるのもありますけど)

QEPMAとEDX

EPMAとEDXの違いが分かりません。
ともに、定性、定量、マッピングなどが出来ると思いますが、測定原理などが大きく異なるのですか?

Aベストアンサー

EPMAは英語で書くとElectron Probe MicroAnalysisです。つまり電子を
入射して分析を行うという意味です。検出するのは特性X線です。

特性X線の波長(=エネルギー)は元素によってすべて異なります。
したがって,特性X線の波長が分かれば電子線が照射された元素の種類が
同定できるわけです。ただし1つの元素が放出する特性X線は,通常
1種類ではありません。元素にはK殻,L殻,M殻,・・・というように
エネルギーレベルの異なる様々な電子軌道が存在しますので,それぞれの
軌道の発生する特性X線は異なります。複数の元素が存在する場合には
これらの特性X線が重なりあうように放出されますので,波長が近い場合
には,元の元素を特定するのが難しくなります。そのため,複数の元素比
などを求めたい場合には,1つの元素が放出する複数の特性X線を用いる
必要があります。

特性X線は光と同じ電磁波です。ですから分光が可能です。分光結晶を
プリズムのように用いれば,波長の異なる特性X線の放出角度が変えられ
ます。この位置情報を検出器で計測するのがWDSまたはWDXと呼ばれる
手法(波長分散型分光)です。検出したい元素によって検出器の角度を
変えなければなりませんが,特性X線が重なり合うように放出されても
精度よく分解できますので,定量性に優れ,微量な元素や軽元素の検出
に威力を発揮します。ただし測定には時間がかかります。狭義では,
WDSだけをEPMAと呼ぶ場合がありますが,原理と英語の意味を考えれば,
WDSとEDSはどちらもEPMAと呼んで差し支えありません。

波長にプランク定数を乗算するとエネルギーとなりますので,波長では
なくて,エネルギーを検出することでも特性X線を放出した元素の種類が
分かります。これがEDSまたはEDXと呼ばれる手法(エネルギー分散型
分光)です。WDSのようなデータの信頼性はありませんが,一度に多くの
元素を同定でき,測定時間も比較的短いので,2次元的な元素マップなど
の定性的な分析に威力を発揮します。WDSのように分光結晶や回転機構
などの特殊な装置が不要で,通常のSEMに検出器をつけただけで測定
できるという手軽さも利点でしょう。

EPMAは英語で書くとElectron Probe MicroAnalysisです。つまり電子を
入射して分析を行うという意味です。検出するのは特性X線です。

特性X線の波長(=エネルギー)は元素によってすべて異なります。
したがって,特性X線の波長が分かれば電子線が照射された元素の種類が
同定できるわけです。ただし1つの元素が放出する特性X線は,通常
1種類ではありません。元素にはK殻,L殻,M殻,・・・というように
エネルギーレベルの異なる様々な電子軌道が存在しますので,それぞれの
軌道の発生する特性X線...続きを読む

Q「ご連絡いたします」は敬語として正しい?

連絡するのは、自分なのだから、「ご」を付けるのは
おかしいのではないか、と思うのですが。
「ご連絡いたします。」「ご報告します。」
ていうのは正しい敬語なのでしょうか?

Aベストアンサー

「お(ご)~する(いたす)」は、自分側の動作をへりくだる謙譲語です。
「ご連絡致します」も「ご報告致します」も、正しいです。

文法上は参考URLをご覧ください。

参考URL:http://www.nihongokyoshi.co.jp/manbou_data/a5524170.html

Q光学顕微鏡と電子顕微鏡の違いについて。

学校の課題でミクロの世界のことについてレポートを書いているのですが、まずなぜ光学顕微鏡はある程度以上小さなものが見えないのかが良く分かりません(光の波長に関係があるようですが・・・)。後、電子顕微鏡はどのような仕組みで物を見ているのでしょうか。最後に、電子顕微鏡にはさまざまな種類があるようですが、どのように違うのでしょうか、教えてください。

Aベストアンサー

 まず光は「波」だと思ってください(半分嘘ですが)。

 人間に見える光の範囲は、虹で言うところの赤から紫までの波長です。これより波長が短かったり長かったりすると、人間の「目」ではとらえる事が出来ません。
 この、赤や紫の外側の光が「赤外線」や「紫外線」です。

 さて、光学顕微鏡で実際に「もの」を見るのは何でしょうか?そう、自分の「目」です。
 ありとあらゆる色の要素を持った光が物に当たり、たとえばその物の材質が青以外の要素を吸収し、青だけをはね返した場合、私達にその物は青く見えます。光の波は光の波長より小さい物質に当たっても、はね返ってきません。そのため、光学顕微鏡では見えるものの大きさに限界があります。

 では、電子顕微鏡(透過型)はというと、やっていることは光学とたいして変わりません。ただ、より小さい波長のものを対象にぶつけ、はね返ってきた波を機械でとらえて、画面に写します。そのため、白黒で表示されてしまいます。

 ほかに走査型電子顕微鏡というのもあります。これは、波をぶつけるのではなく、表面を小さな針でなぞって(実際には触れているのではなく針と見たい物の間に電圧をかけているのですが)、そのでこぼこを画面上に映し出すものです。この場合も当然白黒です。なにしろこれにいたっては、「見る」のではなく「触って」いるのですから。

 わかりやすく書くために、少し嘘が入っていると思いますが、ご愛嬌と言う事で許して下さいね。

 では、再見!!

 まず光は「波」だと思ってください(半分嘘ですが)。

 人間に見える光の範囲は、虹で言うところの赤から紫までの波長です。これより波長が短かったり長かったりすると、人間の「目」ではとらえる事が出来ません。
 この、赤や紫の外側の光が「赤外線」や「紫外線」です。

 さて、光学顕微鏡で実際に「もの」を見るのは何でしょうか?そう、自分の「目」です。
 ありとあらゆる色の要素を持った光が物に当たり、たとえばその物の材質が青以外の要素を吸収し、青だけをはね返した場合、私達にその物...続きを読む

Q融点とガラス転移温度の違い

融点とガラス転移温度の違いが良く理解できません。分かりやすく教えてください。

Aベストアンサー

高分子やってるものです。おそらく質問にでてくる融点は普通いわれている融点ではなく、高分子特有のTmといわれているほうの融点ですよね?
板ガムを考えていただけるとわかりやすいと思います。ガムってそのまんまだと引っ張ってもぶちぶちきれちゃいますよね?でも口の中でかむとひっぱっても伸びるようになります。この引っ張っても伸びる性質に変わる温度が高分子における融点です。次にガムを寒いところもしくは冷凍庫に入れてみてください。常温のガムは折り曲げてもたたまれるだけなのですが、低温におかれたガムを折り曲げようとすると割れてしまうと思います。このぱきぱきの状態になってしまう温度がガラス転移温度です。
食品保存容器とかラップに耐熱温度がかかれていると思いますが、よくみるとなぜか上と下の両方の温度限界がかかれていると思います。上の方の温度限界(融点)になると溶けてしまうのはまあ想像がつくのですが、下の方の温度限界(ガラス転移温度)になるとぱきぱきになって容器が割れてしまうので書かれているのです。

QNをPaに単位換算できるのか?

大変困ってます。
皆さんのお力をお貸しください。

加重単位Nを圧力単位Paに変換できるのでしょうか?
もし出来るとしたらやり方を教えてください。
具体的には30Nは何Paかということです。
変換の過程も教えていただければ幸いです。

是非、ご回答、よろしくお願いいたします。

Aベストアンサー

 No.1さんがおおまかに答えておられますが、補足します。
 N(ニュートン)は力の単位です。対して、Pa(パスカル)は圧力の単位です。これらは次元が違うので、単独では変換はできません。
「30 Nは何Paか」
というのはナンセンスです。
 NとPaの関係は、
Pa = N/m^2
です。質問が、
「30 NをPaを使って表せ」
というのならば、
30 N = 30 Pa・m^2
となります。m^2(平方メートル)という単位が必要になります。物理量の間の関係、
圧力 = 力/面積
および、単位の間の関係
Pa = N/m^2
を整理して覚えてください。

QSTM AFMは表面の何を見ているの?

STMはトンネル電流で、AFMは引力、斥力(原子間力)を用いて表面原子像を測定するとか、STMは試料が導電性でなければならないとかはわかるんですけど、STM、AFMは表面の何を見ているのかよくわかりません。もし、試料が導電性ならばSTM、AFMでどんな事がわかり、どんな像が得られるのか教えてください。

Aベストアンサー

単純に言えば、STMは表面と探針間の一定電気抵抗面の凹凸を像にします。だからより電気を通すところは盛り上がって、通さないところはへっ込みます。
AFMは仰るとおり、一定の原子間力の凹凸を像にします。
よって、表面の凹凸がそのまま電気の通しやすさが同じなら同じ像が得られます。

例えば専門的な話しですがSi(111)7*7表面はSTMもAFMもほぼ同じ像が得られています。SrTiO3という物質の表面では、表面に出ている酸素だけが電気を通しにくいので(だったかな?)その部分だけSTM像では暗くなるにも関わらず、AFMでは原子が存在するので明るく出る等のちがいがあります。しかしこれらの例は全て最近開発されたノンコンタクトAFMというもので得られたAFM像のことです。

AFMにはコンタクトモードとノンコンタクトモードがあります。そのほかにもタッピングモードやフリクションモード等。一般にAFMというとコンタクトモードをさします。これは実際原子間力と言っても、かなり硬いカンチレバーを用い、表面に接触させて像を取得しなければならないので、原子像等は得られません。(一部特殊な表面除く)カンチレバーの先もかなり鋭くないので、解像度もかなり落ちます。
よって、試料が導電性のものであれば、広い範囲で大きな凹凸の表面であれば両方ともほとんど同じ像が見えます。実際、グラファイト表面や金の蒸着膜など、どっちで見てもおんなじような像です。しかしあらゆる条件で同じ像が見えるかというと見えないです。それは動作原理というよりもSTMは非接触で、AFMは接触で像をえることが一番大きな原因だからです。

こういったAFMの弱点を改善するため、真空中にて非常に鋭い先をもったカンチレバーを使い、接触させ無いように改良したのが前述のノンコンタクトモードです。このモードとSTM像を比較しだしたのが学会でもつい最近のことですのでこれから色々と面白そうなことが期待出来ます。

>試料が導電性ならばSTM、AFMでどんな事がわかり、どんな像が得られるのか教えてください。

このご質問に対しては 表面科学のVol.23(2002) に非常に正しい学問レベルでお答えが載っていますので、もし真剣にご興味がおありならばこのレベルで確認されるのがよろしいかと思います。

単純に言えば、STMは表面と探針間の一定電気抵抗面の凹凸を像にします。だからより電気を通すところは盛り上がって、通さないところはへっ込みます。
AFMは仰るとおり、一定の原子間力の凹凸を像にします。
よって、表面の凹凸がそのまま電気の通しやすさが同じなら同じ像が得られます。

例えば専門的な話しですがSi(111)7*7表面はSTMもAFMもほぼ同じ像が得られています。SrTiO3という物質の表面では、表面に出ている酸素だけが電気を通しにくいので(だったかな?)その部分だけSTM像では暗くなるにも関わら...続きを読む

Qねじの「おねじ」と「めねじ」とは?

ねじの「おねじ」と「めねじ」は構造的にどう違うのでしょうか? JISの用語記述では

おねじ=ねじ山が円筒形又は円錐の外面にあるねじ
めねじ=ねじ山が円筒形又は円錐の内面にあるねじ

とあります。これは単純におねじ=ボルト  めねじ=ナット と考えていいのかと思っていたのですが、用語集の中に

平行ねじ=ねじ山が円筒の内面、または外面にあるねじ

というものがあり混乱してしまいました。 すごく初歩的な問題なのですが、お願いします。

Aベストアンサー

こんにちは。
なんと!ネジには平行じゃないテ-パ-ネジがあるのです。
??って思うかも知れませんが 気密を必要とする 接続(通常パイプ関係が多い)に使用します。
ネジ込み初めはガタガタで 最後にギュってしまります。JISでは以前はPT 今はRCネジと言います。
で 平行ネジの記述は それらに対して平行といったので メネジ オネジを含んだ言い方ですね。
つまり 平行ネジにも テ-パ-ネジにも オネジメネジは有るのです。

Q元素と原子の違いを教えてください

元素と原子の違いをわかりやすく教えてください。
よろしくお願いします。

Aベストアンサー

難しい話は、抜きにして説明します。“原子”とは、構造上の説明に使われ、例えば原子番号、性質、原子質量などを説明する際に使われます。それに対して“元素”というのは、説明した“原子”が単純で明確にどう表記出来るのか??とした時に、考えるのです。ですから、“元素”というのは、単に名前と記号なのです。もう一つ+αで説明すると、“分子”とは、“原子”が結合したもので、これには、化学的な性質を伴います。ですから、分子は、何から出来ている??と問うた時に、“原子”から出来ていると説明出来るのです。長くなりましたが、化学的or物理的な性質が絡むものを“原子”、“分子”とし、“元素”とは、単純に記号や名前で表記する際に使われます。

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング