あなたの映画力を試せる!POPLETA映画検定(無料) >>

物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?
引張応力とせん断応力を合成した応力が存在し,それが許容応力以下かを調べる必要があるのでしょうか?
その場合は,計算方法も教えて欲しいです.

このQ&Aに関連する最新のQ&A

A 回答 (2件)

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,



2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する」は同義語ではありません。

一般的な許容応力法の検討では、

3次元物体には、3方向(x、y、z)の材軸が存在します。この物体に3方向の軸力と剪断力が同時に作用する場合、この物体に生じる最大応力は、
σmax=√(σx^2+σy^2+σz^2+3τ^2)
で求めることができます。

もし、同時に剪断力を受ける物体が細長い物体で、1方向(x方向)にのみ引張りが生じているならば、
σy=σz=0
となって、
σmax=√(σx^2+3τ^2)
で計算することができます。この最大応力が許容応力を超えないことを確かめます。

多少、簡単に書きすぎたかもしれませんが、基本的な流れとしては、合っていると思います。
また、破壊についても基本的な考え方は同じですが、式の表現方法が多少異なり、より詳細な表現がされ、比較の対象が「許容応力」ではなく「降伏応力」になります。

詳しくは、応力テンソル、ミーゼス、トレスカなどのキーワードをgooなどで検索すると詳しい説明のあるサイトを見ることができます。
    • good
    • 0
この回答へのお礼

ありがとうございます。
知りたいことを大まかに知ることができました。
複数の応力による最大応力を求める必要があるのですね。
詳しくは参考書を調べてみます。

お礼日時:2006/09/18 12:30

これはMisesの降伏条件式を用いて計算します。

合力ではありません。今手許に書物がないので、ここに書けませんが、応用力学の本には必ず出ていますからそれを参照してください。
    • good
    • 0
この回答へのお礼

ありがとうございます。調べてみます。

お礼日時:2006/09/18 12:26

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q鋼材のせん断強度√3の意味について

鋼材のせん断強度だけF/1.5√3と
√3が係数として掛かってます。
他の、圧縮・引張・曲げには√3の係数
はかかりません。
なぜ、せん断だけ√3の係数が掛かるのか
分かる方教えて頂けませんか?

Aベストアンサー

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=0・・・(2)
とする事ができます。
また、純剪断状態を考慮すれば、主応力が全て剪断であると考えられるので、
σ1=(-σ2)=τ・・・(3)
と置けます。

(2),(3)を(1)に代入して計算すると、
σy^2=3τ^2・・・(4)
となります。

(4)を変形して
τ=σy/(√3)
となります。

つまり、√3は、vonMisesの剪断ひずみエネルギー説に基づいた降伏理論によって導かれた数値です。

基本的には、yu-foさんの回答3で良いと思います。

物体の多軸応力に対する降伏条件の説の中で、von Mises の剪断ひずみエネルギー説があります。
3次元物体の主応力をσ1、σ2、σ3としたときの降伏条件は、
単軸引張に対する降伏応力度をσy、とすると、
剪断応力度は主応力の差に比例するので、
σy^2=1/2・((σ1-σ2)^2+(σ1-σ3)^2+(σ2-σ)^2))・・・(1)
であらわすことが出来ます。

ここで、鉄骨造に用いる鋼材はほとんど板材のの組み合わせなので、2次元つまり、平面応力とみなすことができ、
σ3=...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q相当曲げ応力・相当ねじり応力とミーゼス応力の違い

ねじりと曲げを同時に受ける軸の応力を手計算で評価する時に相当曲げ応力もしくは相当ねじり応力を使用するようですが、FEMの解析ソフトでねじりと曲げを同時に受ける軸の応力を解析した場合、ミーゼス応力で評価したものと手計算で評価した相当曲げ応力もしくは相当ねじり応力に違いはあるのでしょうか?
ミーゼス応力=相当応力といった説明があり、ミーゼス応力(相当応力)と相当曲げ応力もしくは相当ねじり応力と違いがあるのでしょうか?初歩的な質問で申し訳ありませんが、わかりやすい回答をお願いします。

Aベストアンサー

相当応力には、ミーゼスの相当応力と、トレスカの相当応力とがあります。機械技術者にとっては、トレスカの相当応力は重要ではなく、「相当応力=ミーゼスの相当応力」となります。FEM解析プログラムでも、機械設計向けのものは、ミーゼスしか表示しないようになってきています。
なぜ機械の世界でトレスカの相当応力が使われないかと言えば、応力の6成分をせん断応力に換算するからです。機械の世界では、せん断応力を求めてみても、これと比較するせん断強度というデータがほとんどありません。
これに対し、ミーゼスの応力は、応力の6成分を引張応力に換算してくれます。引張の強度基準値というものは入手しやすいので、こちらの方が設計する際に極めて便利なのです。

ミーゼスの相当応力が発表されたのは20世紀半ばですが、この相当応力というものが世の中に認知され始めたのは、CAEが普及し始めた1980年以降のことです。ですから次のような弊害が残っています。
(1)1980年代以前に機械工学の専門教育を受けた人は、相当応力という概念さえ知らない。(教える側が知らないので、ごく当然のこと)
(2)相当応力が普及する前には、主応力が使われていた。このため、昔作られた古典的な強度基準は主応力基準のものがほとんどで、現代の相当応力基準の考え方とは合わないことも多い。
(3)軸の強度基準も1960年代以前に作られたために、相当応力基準であるはずがなく、材料力学の教科書や、諸設計基準として掲載されているものは主応力基準である。

さて、あなたのご質問の核心です。
相当曲げ応力は、曲げと捩りの両方が作用した場合、これを”主応力の考え方を介して”曲げ応力に換算するという古典的な方法です。”相当”という言葉が入っていますが、上記の相当応力とは関係がありません。
また、相当捩り応力は、曲げと捩りの両方が作用した場合、これを”主応力の考え方を介して”捩り応力に換算するという古典的な方法です。これも上記の相当応力とは関係がありません。(ただし、捩り応力に換算しても、捩り強度のデータがなければ使いようがないので、あまり使われることはありません。)

「ねじりと曲げを同時に受ける軸の応力を手計算で評価する時に相当曲げ応力もしくは相当ねじり応力を使用するようですが」と書かれていますが、昔はこの方法しかありませんでした。
じゃあ、「今の世の中、相当応力基準に変えてもいいじゃないか?」とおっしゃるかも知れませんが、ちょっとお待ちください。世の中には法律で評価基準が定められているものがあります。建築基準法はその最たるものです。

もし、あなたの設計対象がこのような法律に規定されているならば、真実は別として、法律を守らなければなりません。勝手に変更することはできないのです。
もし法律の規定がなければ、部門内の合意をとって、相当応力基準に変更することができます。ただし、あなたの周囲の人は”相当応力”というものを未だに知らないかも知れません。この時はかなりの抵抗を受けますので、それなりの理論武装や世の中の流れを示す資料が必要となりますよ。

ところで、あなたの設計対象の”軸”とは、断面が円形のものですよね?
もし円形でないとすると、話はこのような掲示板には書ききれないほどメチャメチャに複雑になりますので、要注意です。
(この場合には、弾性論等の専門書を読んで勉強しなければなりません。)

相当応力には、ミーゼスの相当応力と、トレスカの相当応力とがあります。機械技術者にとっては、トレスカの相当応力は重要ではなく、「相当応力=ミーゼスの相当応力」となります。FEM解析プログラムでも、機械設計向けのものは、ミーゼスしか表示しないようになってきています。
なぜ機械の世界でトレスカの相当応力が使われないかと言えば、応力の6成分をせん断応力に換算するからです。機械の世界では、せん断応力を求めてみても、これと比較するせん断強度というデータがほとんどありません。
これに対し、ミ...続きを読む

Qボルトの許容せん断応力について

ボルトの許容せん断応力の求めかたを教えてください。
材料はSS400
ボルトはM20 
です。
計算式だけでもかまいませんのでよろしくおねがいします。

Aベストアンサー

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛ければ、許容せん断力(A×f=2.198ton)が求まります。

なお、この値は長期荷重に対する許容値で、風荷重等の短期荷重に対しては1.5倍
することができます。

こんなんでどうでしょうか?

ちなみに、

http://www.kawasaki-steel.co.jp/binran/index.html

にその他いろいろデータが載ってます。

参考URL:http://www.kawasaki-steel.co.jp/binran/index.html

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛け...続きを読む

Qミーゼスの降伏条件

ミーゼスの降伏条件で以下のような式に至る理由が分かりません!

ミーゼスの降伏条件:
 (σ1-σ2)^2+(σ2-σ3)^2+(σ3-σ1)^2=2σy^2


どうやって導き出したのでしょうか?ひずみエネルギーからなのでしょうか?
塑性力学の本やネットを探し回っても分からなかったので、分かる方、是非ご回答下さい。よろしくお願いします。

Aベストアンサー

ミーゼスの応力は、金属材料において、
「ある部位の、せん断に起因する歪エネルギー密度Usが、降伏応力(または耐力)に対応する値に達したとき、降伏が始まる」
という仮説に基づいて、導入されました。
この仮説には、
「静水圧のみが、いくら作用しても、降伏は発生しない」
という意味が込められていますが、このことは、実験で確認されました。

以上を式で表してみましょう。

全歪エネルギー密度Uから、静水圧に起因する歪エネルギー密度Upを差し引けば、せん断に起因する歪エネルギー密度Usが得られます。
要するに、
Us=U-Up ・・・(1)
です。

主応力を、
σ1、σ2、σ3、
これらによって発生する歪を、
γ1、γ2、γ3
として、Uを表せば、
2U=σ1・γ1+σ2・γ2+σ3・γ3 ・・・(2)
これに、フックの法則、
ε1=(σ1-νσ2-νσ3)/E etc ・・・(3)
を適用すれば、応力だけの式に書き換えられます。

また、応力の静水圧成分をσp、σpによって発生する歪成分をεpとすれば、
2Up=σp・γp
σp=(σ1+σ2+σ3)/3 ・・・(4)
εpは、式(3)において、
σ1=σ2=σ3=σp、ε1=εp ・・・(5)
と置くことによって、得られます。
εp=(1-2ν)σp/E ・・・(6)

式(1)(を2倍したもの)
2Us=2U-2Up
に、せん断弾性係数Gと縦弾性係数Eの関係
E=2(1+ν)G ・・・(7)
を適用すると、
2Us={(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2}/6G ・・・(8)
となり、ミーゼスの応力の表示式の主要な部分が見えてきます。

ミーゼスの応力は、3軸の応力σ1、σ2、σ3と等価な1軸の引張圧縮応力をσm(=あなたのσy)とするもので、(8)において、
σ1=σm、σ2=0、σ3=0 ・・・(9)
と置けば良く、結果は
2Us=2σm ^2/6G ・・・(10)
となります。

あとは、式(8)と式(10)を等置すれば、おしまい!!
あなたのレベルからすると、ちょっと親切過ぎたかも知れませんね(^^

ミーゼスの応力は、金属材料において、
「ある部位の、せん断に起因する歪エネルギー密度Usが、降伏応力(または耐力)に対応する値に達したとき、降伏が始まる」
という仮説に基づいて、導入されました。
この仮説には、
「静水圧のみが、いくら作用しても、降伏は発生しない」
という意味が込められていますが、このことは、実験で確認されました。

以上を式で表してみましょう。

全歪エネルギー密度Uから、静水圧に起因する歪エネルギー密度Upを差し引けば、せん断に起因する歪エネルギー密度Us...続きを読む

Q比重の単位って?もうわけわからない・・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??なぜ、この場合、厚さだけはmmの単位で、縦と横はmでの計算をするのでしょうか?

比重ってのは単位はどれに合わせてすればいいのでしょうか?

そして円筒の場合はどのように計算するのでしょうか?
まず、円の面積を求めて、それに長さを掛けるのですよね?
これは円の面積の単位はメートルにして、長さはミリで計算するのでしょうか??
わけわからない質問ですみません・・・。もうさっぱりわけがわからなくなってしまって・・。うんざりせずに、解かりやすく、教えてくださる方いましたらすみませんが教えて下さい・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??...続きを読む

Aベストアンサー

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g/cm3)=471g=0.471kg
と計算します(cmとgで計算しているのでCGS単位系と呼びます)

円筒の場合も同様に
体積×密度で求めます
円筒の体積=底面積(円の面積半径×半径×円周率)×高さ
です

比重=密度で計算するならば、水が1gになる体積1cm3を利用するために長さの単位をcmに直して計算してください
計算結果はgで出るのでこれをkgに直してください

最初からkgで出したい時は
水の密度=1000(kg/m3)
(水1m3の重さ=100cm×100cm×100cm×1g=1000000g=1000kg)
を利用して
目的の物質の密度=1000×比重(kg/m3)
でも計算できます
(このようにm kgを使って計算するのがSI単位系です)

0.1×0.1×6×7.85は#4の方がおっしゃるとおり
0.1×0.1×0.006×1000×7.85の0.006×1000だけ先に計算したのだと思います

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g...続きを読む

Q断面係数と極断面係数

断面係数と極断面係数の違いについて質問です。
中実丸棒の場合、断面係数Zは

Z=πd^3/32

ですが、極断面係数Zpは

Zp=πd^3/16 となっています。

断面係数は(断面二次モーメント)÷(中立軸からの最大距離)で計算できますが、極断面係数はどうやって計算するのでしょうか。

Aベストアンサー

 断面の正面図が、紙に書かれていると想像して下さい。曲げ作用は、紙面上に横に引かれた中立軸を中心に、断面全体を「紙の前後に回転」させます。
 ねじり作用は、「紙面に垂直な」中立軸を中心に、断面を「紙面内で回転」させます。
 だけど、中立軸を求める発想はどちらも同じです。曲げ作用なら、
  ・曲げ歪みは、中立軸からの符号付き距離に比例する。
  ・曲げモーメントは偶力だから、応力合計は0。
  ・応力は歪みに比例する。
という事から、断面剛性一定なら、
  ∬(y-y0)dxdy=0
から中立軸位置y0を計算できます。∬の積分範囲は断面全体で、結果は重心ラインです。
 ねじり作用なら、同じ仮定から、
  ∬|r|e(r)dxdy=0
で計算できます。ここでベクトルrは、ねじりの中立軸位置を(x',y')とした場合、r=(x-x',y-y')で、e(r)はrと左回りに直行する単位ベクトルです。結果は断面剛性一定なら、重心位置を(x0,y0)として、
  (x',y')=(y0,x0)
だったと思います(確認してください)。円形断面なら、やっぱりその中心になります。
 最後に、極断面二次モーメントも、断面二次モーメントと同じ発想で、
  Ip=∬|r|^2dxdy
です。

 断面の正面図が、紙に書かれていると想像して下さい。曲げ作用は、紙面上に横に引かれた中立軸を中心に、断面全体を「紙の前後に回転」させます。
 ねじり作用は、「紙面に垂直な」中立軸を中心に、断面を「紙面内で回転」させます。
 だけど、中立軸を求める発想はどちらも同じです。曲げ作用なら、
  ・曲げ歪みは、中立軸からの符号付き距離に比例する。
  ・曲げモーメントは偶力だから、応力合計は0。
  ・応力は歪みに比例する。
という事から、断面剛性一定なら、
  ∬(y-y0)dxdy=0
...続きを読む

Qねじり剛性係数と断面二次モーメントの関係

ねじり剛性係数と断面二次モーメントの関係
縦横XYの断面二次モーメント値からねじり剛性係数、またはそれに相等するねじり変形しにくさを表す数値を出す方法を探しています。

いつくかある断面形状のねじり強さの比率を知りたいのです。材質は考慮しません。
単純にXYの断面二次モーメント値をかけ算して、その値の比率で判断していいものでしょうか?

具体的には乗り物のフレームを設計して、すでに一度専用のパイプを試作しました。
予想以上に強かったので断面を小さくして軽量化を図りたいのですが、一体どれくらい落としてよいものか判断がつかないのです。
結局は当てずっぽうなのですが、最初のものに比較して何%ダウンという指標があれば有力な判断材料となります。
宜しくお願いいたします。

Aベストアンサー

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断面の両端面が変形後も平面となるように拘束されている場合(全周溶接などによって)には、Jはやはり式(2)で定義できます。
今の質問の構造の場合、フレームと書いていらっしゃるので、棒の両端面はしっかりと拘束されていると思われ、式(2)が適用できます。

これがあなたの質問に対する直接の回答となります。

以上のほか、棒の断面の両端面が変形後も平面となるように拘束されていない場合のケースについて補足説明しておきます。
棒を両手で握って捩ると、断面が円でない場合には、両端面が変形後は軸方向に波打った形状となって、平面とはなりません。(この現象が顕著に現れる例としては、紙を丸めて筒状にして捩った場合があげられます。)
このような捩りの状態を「サン・ブナンの捩り」と呼びます。
断面が長方形の棒を、両端を溶接せず、補助金具などを用いて、他の部材にねじ止めしているような場合には、このサン・ブナンの捩りが発生しやすくなります。
この場合の注意としては、
J<<Ip ・・・(3)
となってしまうことです。
この場合の取り扱い方については、一般の材料力学の本はごまかしているのが普通です。
あなたの場合、「予想以上に強かった」と書かれているので、サン・ブナンの捩りの状態ではなく、両端面がガッシリと他部材に溶接されているケースと推測しています。

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断...続きを読む

Q突き合わせ溶接と隅肉溶接について勉強しているのですが、突き合わせ溶接は

突き合わせ溶接と隅肉溶接について勉強しているのですが、突き合わせ溶接は「部材厚が同じ材料をほぼ同じ面内で溶接する方法」隅肉溶接は「直行する二面の隅部を溶接する方法」という認識で良いと思うのですが

それぞれの溶接方法の使用箇所の制限やメリット、デメリットがいまいちわかりません。
調べた感じだと、突き合わせ溶接は部材が一体化するもののせん断力に弱そうですし、隅肉はその逆で引っ張りには弱いものの、せん断力には強そうですが、これらも自信がありません。

これらの溶接方法にはどのような長所、短所及び使用箇所の制限があるのでしょうか?

Aベストアンサー

(社)日本溶接協会より引用

溶接継手の強度を求める基本式は,突合せとすみ肉の別なく,次式で与えられる。すなわち,溶接継手の強度は,のど断面あたりの強度として求める。
のど断面は,のど厚と有効溶接長さを掛け合わせたものである。
Pmax=σw・a・ef
ここで,σw:溶接継手の強度(N/mm2)
Pmax:最高荷重(N)
a:のど厚(mm)
ef:有効溶接長さ(mm)

http://www-it.jwes.or.jp/qa/details.jsp?pg_no=0010020040
http://www-it.jwes.or.jp/qa/details.jsp?pg_no=0040020020

参考URL:http://www-it.jwes.or.jp/qa/sitemap.jsp

Q最大曲げモーメント公式 Mmax=wl²/8 

(左支持荷重×距離)-(左半分荷重×左半分荷重重心)
(P/2×L/2)-(P/2×L/4)
=PL/4-PL/8
=PL/8

どうして(左支持荷重×距離)から(左半分荷重×左半分荷重重心)を引くのか分かりません。教えてください。

Aベストアンサー

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問が生じるのだと思います。

最大曲げモーメントを求めるには、図1の等分布荷重を作用している状態でスパン中央で切断して考えます。これが図3となり等分布荷重が作用している状態となります。

切断した部分の等分布荷重wを集中荷重に置き換えると、図4のようにP/2となり、スパンの半分の半分の位置、つまりL/4の位置に作用することとなります。ここで、スパン中央を中心としてモーメントのつりあいを考えると、質問者さんの式が導き出されます。

Mmax=P/2×L/2-P/2×L/4
=PL/4-PL/8
=PL/8

なお、P=wLより、最大曲げモーメントの公式 Mmax=wL^2/8 となります。

「計算の基本から学ぶ建築構造力学」(著者 上田耕作、オーム社)、
「ズバッと解ける!建築構造力学問題集220」(著者 上田耕作、オーム社)を参考にしました。

参考URL:http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-20856-0

まず、この問題は図1のようにスパンLの単純ばりに等分布荷重wが作用しているときの最大曲げモーメントMmaxを求めるものだと思います。

応力の前にまず反力を求めますが、反力を求めるには、等分布荷重wを集中荷重Pに直してスパン中央に作用させます。これが図2となり、集中荷重Pの大きさはwLとなります。また、反力はPの半分ずつでP/2となります。

最大曲げモーメントは、スパン中央で生じるので、スパン中央で切断して考えますが、図2の反力を求める図を切断して考えると質問者さんのような疑問...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

価格.com 格安SIM 料金比較