半導体製造工程でウェハーを切断する時にダイシングしますが、この時にウェハーを固定しているUVテープは切断されてしまうのですか?それとも、ウェハーとUVテープの境目で切断しているのですか?
ダイシングの後にUVテープを広げて、ICチップを取りやすくすると思うのですが、ウェハーが切断されていないと、UVテープを広げても、チップは広がらないと思うし、かと言って、ウェハーとテープの境目で切断するのも、かなり厳しいかと素人考えで思ってしまいます。
どなたか、教えて下さい。

A 回答 (1件)

通常、ウェハーと一緒に、UVテープの厚みの半分ぐらいまで切っています。

UVテープの厚みが70~80ミクロン(モノによりますが)ですので、かなりの高精度での機械制御になりますが、今時の精密電子部品製造用の装置としては、あまり驚くべき技術では無いのも事実です。
    • good
    • 0
この回答へのお礼

胸のつっかえが取れました。でも、テープの厚み半分40μmって髪の毛より細いですよね・・・。そこで切断・制御するって、素人的にはやっぱりすごい技術のように思えてしまいます。ありがとうございます。

お礼日時:2002/04/02 09:25

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q半導体部品、半導体製造装置とは

半導体製造装置とは、半導体部品(トランジスタなど)又は半導体装置の製造装置のことですよね。

だとしたら、なぜ、「半導体部品(又は半導体装置)製造装置」といわないで、
「半導体製造装置」と言っているのでしょうか?

Aベストアンサー

シリコンウェーハなどの材料基板上に半導体素子(デバイス)を形成する機械が「半導体製造装置」であり、切り出してパッケージングして「部品」にする機械とは違うと思いますよ。
パッケージングまで一気にしてしまう設備もあるかと思いますが、それは各装置の集合体であって、工程によって呼び名は変わるものかと思います。

Q半導体製造工程で500℃近い熱がかかる工程とは?

半導体製造工程で500℃近い熱がかかる工程とは?

半導体素子を作る際、500℃近い熱がかかる工程があると聞いたのですが、
どの工程でしょうか?
私の知っている限り、半導体製造工程は、
レジスト塗布→露光→エッチング→イオン注入→平坦化→電極形成
です。

よろしくお願いします。

Aベストアンサー

昔、半導体デバイスの研究をしていました。といっても化合物半導体ですが。
『500℃近い』とは、室温よりも非常に高い温度という意味で使っていると思いますが、確かに化合物半導体にとっては高温ですが、Siデバイスにとってはむしろ低温のプロセスです。
なにしろ、先ず最初の表面酸化膜形成は確か1200℃くらいの筈ですから。
ちなみに化合物半導体にCVDで成膜する場合は350℃くらいです。

レジスト塗布後のベーキングはせいぜい200℃程度ですが、ドライエッチングでは300℃くらいに上がることもあります。
イオン注入はドーズ量が高いと基板温度が数百度になることもありますが、意図的に500℃以上に保って活性化率を高めることもあります。
その後の活性化アニールでは、シリコンでは800~1000℃くらい、化合物でも300~500℃くらいに昇温します。
近年ではランプアニールが主流ですが、この場合は化合物でも800℃くらいに上げることもあるようです。
電極も蒸着しただけでは接触抵抗が高いので、きちんと低抵抗のオーミック電極を取りたいときは、数百度でアニールします。

Q薄膜形成の対象は半導体ウエハか半導体基板か

「蒸着などの方法で薄膜を形成する」という文章を書く場合において、その薄膜を形成する対象は「半導体ウエハ」と「半導体基板」との両方があるのでしょうか?
それとも、「半導体ウエハ」と「半導体基板」とのいずれか一方ですか?

そもそも「半導体ウエハ」と「半導体基板」との違いは何でしょうか?

Aベストアンサー

>半導体ウエハと半導体基板とは、同じものということですか

インゴットを輪切りにした直後の加工していない状態なら、同じものと考えていいでしょうね。実際ウェファー上には基板しか存在しないわけですから。
文脈上は、ウェファーはインゴットから切り出された円盤状の物体そのものを指すのに使われるのに対して、基板はその円盤上に載っている半導体で作られた土台のような文脈で使われます。

薄膜を形成するというのであれば、後者の意味で使ったほういいかと思います。

http://en.wikipedia.org/wiki/Wafer_%28electronics%29
http://en.wikipedia.org/wiki/Substrate_%28electronics%29
ちなみにSubstrateというのがいわゆる基板です。

Qコンデンサについての問題で質問です 充電されたコンデンサを並列に接続し片方のコンデンサの極板間を広げ

コンデンサについての問題で質問です

充電されたコンデンサを並列に接続し片方のコンデンサの極板間を広げていくともう片方のコンデンサの空げきに絶縁破壊が起きるようです。
https://youtu.be/Piu8-FC8kd0
参照はこの問題です。

なぜ片方のコンデンサの極板間を広げていくともう片方のコンデンサの空げきに絶縁破壊が起きるのでしょうか。

さらにこの問題の(b)の解答(aは分かります)は空気の絶縁破壊電圧30KVにならないのはなぜなのでしょうか。

Aベストアンサー

>コンデンサは大きさの違う極板同士の場合、
>向かい合わせになっている面積のみが
>コンデンサになるのではないでしょうか。
>(向かい合わせになっていない部分は電界が発生しないので)

そんな単純にはいかないのです。
電気力線は実際は図のようになります。

Q半導体って?

半導体って?

友人にプリンター設定を説明している時のことです。

インクの金属部分を「これはインク情報が入っているところなので、素手で触らないでね!」と言ったら、「うん、半導体のところだね。」と言われ、
「半導体というより、ICチップだと思うよ。」と言ったのですが、
はっきり半導体ではないと言い切れない自分がいて、いったい半導体って何だろうと思いました。

半導体とは、電気を通すような通さないようなちょっと中途半端な存在ですよね。
パソコン内部にはたくさん使われているんだと思いますが、
それはどの部分でしょうか?
また、インクの金属部分は半導体かそうでないかとその理由を教えてください。

(パソコンパーツの説明は、自作をするのである程度ついていけます。
が、半導体がわからない位なので、その中間あたりのレベルだと思います。)

Aベストアンサー

友人にされた説明は適切だと思います。
半導体も使われているでしょうが、ICチップと呼んだ方が適切です。
パソコンで使用されている部品で半導体が使われているものは、CPU、メモリ、トランジスタ、ダイオード、その他いろいろなICですね。

>インクの金属部分は半導体かそうでないかとその理由

金属の部分は、銅箔と呼ばれるものです。詳しい材料までは分かりませんが、銅の種類です。半導体ではありません。理由と言うほどのものはないですが、半導体を、むき出しで使用することなんてまずありえません。表面が酸化したり、傷ついたりすれば、使い物になりません。
半導体は銀色っぽい色をしてますので、見た目も違いますね。

Q半導体ー半導体界面

p型半導体とn型半導体の界面を次のように表現した図がありました。
模式的エネルギーダイアグラムとあります
界面では2つの半導体のhomo lumoは連続になるのではないでしょうか。なぜこんなにバンドベンディングが起こっているのでしょうか。

Aベストアンサー

HOMO、LUMOということは、これは有機物半導体ですね。
(HOMO、LUMOは逆だと思いますが)。
私は有機屋でないので無機の半導体の知識がそのまま通用するかは判りませんが、無機の半導体ヘテロ接合ではよくあることです。
有機半導体のP型、N型をどうやって作るのかも知りませんが、この図では、左右どちらの層もフェルミレベルはHOMO-LUMOギャップの中央付近にあって、左側の電子親和力が小さい(準位が上)の層と右側の電子親和力が大きい(準位が下)の層とをヘテロ接合させた図に見えます。

無機半導体の場合、PN接合でもショットキー接合でもヘテロ接合でも、界面の相対的準位はそのまま、全てのフェルミレベルが一致するように電子が流れます。
(従って有機の場合でも、左右の金属の準位は同じはずです)。
左側の層からは、金属および右側の層へ電子が流出して、フェルミレベルが引き下げられます。
金属の準位は変わらないので、金属との界面が盛り上がった形となります。
逆に右側の層には電子が流入してフェルミレベルが引き上げられますが、やはり金属の準位は変わらないので、金属との界面は下に曲がります。

同様に左右の層の界面の相対的準位は変わらないので、左の層は上に曲がり、右の層は下に曲がります。
多分、左側の層の界面にはホールがたまる(電子が欠乏する)のでP型となり、右側の層の界面には電子が過剰にたまるのでN型となるのでしょう。

有機半導体の場合、HOMO、LUMOが連続になるかどうかは知りませんが、2つの層が同じ物質である場合(ドーピングでP型、N型を作った場合)、あるいは両者が化合して接合した場合にそうなるのではないでしょうか。

HOMO、LUMOということは、これは有機物半導体ですね。
(HOMO、LUMOは逆だと思いますが)。
私は有機屋でないので無機の半導体の知識がそのまま通用するかは判りませんが、無機の半導体ヘテロ接合ではよくあることです。
有機半導体のP型、N型をどうやって作るのかも知りませんが、この図では、左右どちらの層もフェルミレベルはHOMO-LUMOギャップの中央付近にあって、左側の電子親和力が小さい(準位が上)の層と右側の電子親和力が大きい(準位が下)の層とをヘテロ接合させた図に見えます。

無機半導体の場合、...続きを読む

Q半導体について

半導体を知らない人に半導体の基本と役割を口頭で簡単に説明する場合、どのように説明すれば良いでしょうか?

友人に「どういう勉強してるの?」と聞かれ、「半導体」って答えると、必ず半導体って何?って聞かれます。このパターンが多々あり、勉強し始めの私は毎回困ります。

まだこんなことしか分かっていません。
↓↓↓
物質には電気を通す導体と電気を通さない絶縁体があるが、半導体はその中間に属していて.....
シリコンでできている半導体にPやAlをドープするとn型、P型半導体になり....pn接合に電圧を加えて、電子が流れることで電流が流れる。  電気を通すことも通さないこともできるので便利。

上記のようにまるでまとまってません。導体や絶縁体よりも何が優れていて、半導体によって何が実現したのかを説明したいです。

勉強始めたばかりで、まだよく理解できていないのでどうか回答よろしくお願いします。

Aベストアンサー

トランジスタとかICとかLSIとか応用利用の方面でどう使われているのか、コンピュータは半導体なしにはできないってことでも説明して、自分の学んでいる部分の細かい説明まで付いて来れそうならば・・・もっと詳しく、ね。

半導体っていうだけだと、ただ単にほとんど電気を通さないブツだけど、ちょっと混ぜものをしてやると・・・ね。

説明は相手に伝わるように、というのが大事じゃないかな。

QN型半導体とP型半導体の違いについて

受験生です。

一つ気になったことがございまして、
お聞きしたいことがあります。

N型半導体はシリコンにリンPを混ぜたもの。

P型半導体はシリコンにホウ素Bを混ぜたもの。

ですが、リンPとP型半導体のPでこんがらがってしまいます。

N型とP型の名前の由来について
お詳しい方どうぞよろしくお願いいたしますm(_ _)m

Aベストアンサー

ついでにいえば, 混ぜるのは P や B とは限らないはず. 理論的には 13族を使えば P型, 15族を使えば N型になります. まあ, 結晶性とかで問題があるかもしれんけど.

Q半導体工学

p型半導体、n型半導体のそれぞれの場合において、ショットキー接触の場合、金属と半導体のどちら側に正電圧を印加すれば順バイアス状態となりますか??

Aベストアンサー

ショットキー障壁ができるのは、n型半導体では、図1のように、金属の仕事関数 φm が半導体の仕事関数 φs より大きい場合で、電子に対して障壁ができるような状況です。p型半導体では、図2のように、φm < φs の場合で、正孔に対して障壁ができるような状況です。

           金属   n型半導体
  真空準位  ┬   ┬
          |   φs
          φm   ↓
          |     \ ← 電子に対する障壁
 フェルミ準位 ↓___  \ - - - ← 電子
                    ̄ ̄ 伝導帯下端
               \
                 \__ 価電子帯下端

【図1 n型半導体でショットキー接触となる場合】

           金属    p型半導体
   真空準位 ┬    ┬
          |    |   / ̄ ̄ 伝導帯下端
          φm    φs /
 フェルミ準位 ↓___|    __ 価電子帯下端
                |  / ++++ ← 正孔
               ↓/← 正孔に対する障壁

【図2 p型半導体でショットキー接触となる場合】

これらに対して、順バイアスとなるのは、障壁が小さくなる方向にバイアスした場合です。金属-n型半導体系だと、半導体側のエネルギーを上に持ち上げる方向になります(バンド図の上側というは、電子エネルギーを増加させる方向なので、-の電圧を増やす方向)。つまり、金属側に+の電圧を加えるのが順バイアスになります。

金属-p型半導体系はその逆で、半導体側のエネルギーを下に押し下げる、つまり+の電圧を半導体側に加える方向になります。

ショットキー障壁ができるのは、n型半導体では、図1のように、金属の仕事関数 φm が半導体の仕事関数 φs より大きい場合で、電子に対して障壁ができるような状況です。p型半導体では、図2のように、φm < φs の場合で、正孔に対して障壁ができるような状況です。

           金属   n型半導体
  真空準位  ┬   ┬
          |   φs
          φm   ↓
          |     \ ← 電子に対する障壁
 フェルミ準位 ↓___  \ - - - ← 電子
   ...続きを読む

QIGBTのウェハーについて

IGBTを製造するためのシリコンウェハーについて、ご存じでしたら教えてください。

IGBTにはFZウェハーしか使えないためにウェハーの大口径化が難しく、現状では5インチウェハーで製造されていると聞きました。もしCZウェハーが使えるならば大口径化が可能になり、コストダウンが可能になります。

なぜCZウェハー+エピではIGBTを作ることができないのでしょうか。

Aベストアンサー

IGBTはエピウエハを使って作られてきました。近頃はFZウエハを使う製品が増えてきているようですが、それでもCZウエハの上にエピ成長させたものの方が多いと思います。6から8インチウエハが量産化されてます。#1の回答のようにIGBTは耐圧が高いために厚いエピ成長が必要です。厚いエピは大変高価になります。
FZウエハは大口径が難しいのですが、エピ工程が不要なことで、高耐圧用では格段に安くなります。3kVから6kVのIGBTではFZが圧倒的に有利ですが、600Vになりますとエピはさほど厚くないし、伝統的な作り方の方が今のところ易しいようです。
電気学会から出ている「パワーデバイス・パワーICハンドブック」を図書館でも見ることをお勧めします。ちょっと古く最近の動向は十分ではありませんが..。


人気Q&Aランキング