(平面波の問題で)
伝搬方向をz軸に、電界の方向をx方向にとって、
平面波の定義は、振幅が伝搬方向に垂直な断面内で一様であることなので
(∂^2Ex/∂z^2) -εμ0(∂^2Ex/∂t^2)=0

次に電界がx成分であり進行方向がz軸方向なので磁界の方向がy
になることはわかったのですが、
そこで、
∇×H=ε(∂E/∂t)を利用して、
(∂Hy/∂z)=-ε(∂Ex/∂t)

となる過程を教えてください。

A 回答 (1件)

H≡(Hx,Hy,Hz)においてHはz方向に進行する平面波であるから


Hx,Hy,Hzはいずれもzだけの関数である
∇×Hのx成分は∂Hz/∂y-∂Hy/∂zであり
Hzはzだけの関数であるから∂Hz/∂y=0である
従って∇×Hのx成分は-∂Hy/∂zである
従って∇×H=ε・∂E/∂tより∂Hy/∂z=-ε・∂Ex/∂tである
    • good
    • 0
この回答へのお礼

ありがとうございました。

お礼日時:2002/04/06 19:29

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q「完熟トマト」の定義とは?

野菜や果物には「完熟〇〇」という表現があります。ものによって「完熟」の定義が違うと思いますが、「完熟トマト」の世の中共通の定義というものが有るのでしょうか?
有るのでしたら内容を教えてください。
お願いします。

Aベストアンサー

農産物流通です。
通常市場に持ち込まれるトマトは薄いピンクすら入る以前のものです。
そうしなければ流通(時間や扱い)に耐えられないでしょうね。

では、「完熟」はというと完熟トマトの共通の定義がないので曖昧です。
本当に完熟、つまり収穫してすぐに食べる状態では流通させると確実に割れます。
うちでは完熟トマトとして販売している頃はカラーチャートで7~8段階で収穫してもらっていました。
見た目は全体が赤く完熟ですが赤がまだ薄いです。

現在は「完熟」という表現が曖昧なことと本当の完熟ではないことから
消費者に優良誤認を与えかねないということで、表示・表現をやめています。

自らの団体が定義をつけ、それを常に消費者に案内していれば
「完熟」という表現を使っても許されそうですね。
例えば「○○産地の完熟基準・・・カラーチャート9段階で収穫し、消費者の手元に24時間以内で届けたものを完熟という」など。

Q(∂U/∂V)_t=T(∂P/∂T)_v-P

大学の講義で (∂U/∂V)_t=T(∂P/∂T)_v-P
をマクスウェルを使わずに証明していたのですが
写真の?の部分の意味がわからないです…
教えてくださいm(__)m

Aベストアンサー

意味としてはマックスウェルの関係式と同じものですね。

df = fx dx + fy dy

が完全微分である条件は

∂fx/∂y = ∂fy/∂x

という数学の定理。

より一般に,3変数なら

df = fx dx + fy dy + fz dz

fx, fy, fzをベクトルFの成分としたとき,dfが完全微分である条件は

rot F = 0

このとき,ベクトルFを導くスカラーポテンシャルφが存在し

F = grad φ

となるので,

fx = ∂φ/∂x,fy = ∂φ/∂y

したがって,冒頭の

∂fx/∂y = ∂fy/∂x

という条件は

∂(∂φ/∂x)/∂y = ∂(∂φ/∂y)/∂x

Qガラス転移の定義とは??

ガラス転移の定義を、自分の言葉でテストに書いたら
×になりました。
ガラス転移の定義ってなんですか??
ちゃんと決まっている言葉(定義)なのですか??
なんか調べてもぱっとこなくて・・・
なんとか教えてください。
よろしくお願いします。

Aベストアンサー

あなたの回答を教えて下さい。テストの回答はないのですか?
質問の回答に困ります。

以下参考まで。
ガラス転移とは,ガラスを過熱するか,またはガラスになる過冷却液体を
冷却した時その物質の融点又は液相温度の2/3~1/2の温度付近で,熱膨張
係数や比熱容量突然変化する温度,"ガラス転移温度が存在すること。
ガラスは過冷却の液体である。との言い方もできる。(ガラスの事典より)

 ガラス転移現象とは、過冷却状態からガラス状態に移るときに性質が
大きく変わる(例えば熱膨脹係数が急に小さくなる)現象をいい、ガラス
転移現象を示す温度をガラス転移温度(あるいはガラス転移点)と呼びます。

 ガラス転移とは、温度を変えたときに、アモルファス固体相が示す、比
熱や熱膨張係数のような熱力学的微分量が結晶的な値から液体的な値へと
多少急激に変化する現象である。(Wong and Angell, 1976; p.36).

 過冷却液体をさらに冷却していくと、分子運動がさらに制限されるよう
になり、最終的にはほとんど停止する。この過冷却液体が運動性を失う現
象をガラス転移と呼ぶ。つまりガラス転移は無秩序である非晶部位(過冷
却液体)でしか起きない(固体である結晶は融解するだけ)。
 

あなたの回答を教えて下さい。テストの回答はないのですか?
質問の回答に困ります。

以下参考まで。
ガラス転移とは,ガラスを過熱するか,またはガラスになる過冷却液体を
冷却した時その物質の融点又は液相温度の2/3~1/2の温度付近で,熱膨張
係数や比熱容量突然変化する温度,"ガラス転移温度が存在すること。
ガラスは過冷却の液体である。との言い方もできる。(ガラスの事典より)

 ガラス転移現象とは、過冷却状態からガラス状態に移るときに性質が
大きく変わる(例えば熱膨脹係数が急に小さく...続きを読む

Qdivで『Ex(x+Δ、y+Δ、z+Δ)-Ex(x+Δ、y、z)』は無視できる?

div(発散)の定義の途中過程についてです。

P(x、y、z)の近くに各座標軸に沿った長さがΔx、Δy、Δzの微小直方体を考える。
その微小直方体のyz平面に平行な面をそれぞれA、Bとする。
(Aのx座標がx、Bのx座標が(x+Δx))
E(Ex、Ey、Ez)とする。
∫(A+B)Exds={(Ex(x+Δx、y、z)-Ex(x、y、z))/Δx}ΔxΔyΔz
『ここでy、z座標の値も面内で変化しているが、それはΔy、Δzについ
高次の寄与しか与えない。』・・・※

この最後の1文についてなのですが、
私は〈微小直方体におけるExのy方向、z方向の変化量『Ex(x+Δx、y+Δy、z+Δz)-Ex(x+Δx、y、z)』は
x方向の変化量『Ex(x+Δx、y、z)-Ex(x、y、z)』に比べると無視できる〉つまり
『Ex(x+Δx、y、z)-Ex(x、y、z)>>Ex(x+Δx、y+Δy、z+Δz)-Ex(x+Δx、y、z)』と解釈しました。

そこで質問なのですが、
自分には『Ex(x+Δx、y、z)-Ex(x、y、z)>>Ex(x+Δx、y+Δy、z+Δz)-Ex(x+Δx、y、z)』はちっとも明らかには思えないのですが、
なぜこれが成り立つのでしょうか?
ここら辺の説明が詳しく載っている参考書がなくて困っています。
(どの参考書でも明らかとしてサラッと流されている。)

どなたかよろしくお願い致します。

以下参考HPです。
http://www.ese.yamanashi.ac.jp/~itoyo/lecture/denkigaku/denki01/denki01.htm#発散

div(発散)の定義の途中過程についてです。

P(x、y、z)の近くに各座標軸に沿った長さがΔx、Δy、Δzの微小直方体を考える。
その微小直方体のyz平面に平行な面をそれぞれA、Bとする。
(Aのx座標がx、Bのx座標が(x+Δx))
E(Ex、Ey、Ez)とする。
∫(A+B)Exds={(Ex(x+Δx、y、z)-Ex(x、y、z))/Δx}ΔxΔyΔz
『ここでy、z座標の値も面内で変化しているが、それはΔy、Δzについ
高次の寄与しか与えない。』・・・※

この最後の1文についてなのですが、
私は〈微小直方体におけるExのy方向、z方向の変化量『Ex(x+...続きを読む

Aベストアンサー

『ここでy、z座標の値も面内で変化しているが、それはΔy、Δzについて高次の寄与しか与えない。』

というのは言葉足らずで、
『ここでy、z座標の値も面内で変化しているが、平面A、B間におけるΔy、Δz、それぞれの変化
については、高次の寄与しか与えない。』ということだと思います。

式で表わせば、
{Ex(x+Δx、y+Δy、z)-Ex(x+Δx、y、z)}
-{Ex(x、y+Δy、z)-Ex(x、y、z)}
={∂Ex(x+Δx、y、z)/∂y}・Δy
-{∂Ex(x、y、z)/∂y}・Δy
={∂^2Ex(x、y、z)/∂x∂y}・ΔxΔy
(zについても同様)
となるからです。

因みに、
Ex(x+Δx、y、z)-Ex(x、y、z)
=∂Ex(x、y、z)/∂x}・Δx
であり、
Ex(x+Δx、y+Δy、z+Δz)-Ex(x+Δx、y、z)
={Ex(x+Δx、y+Δy、z+Δz)-Ex(x+Δx、y+Δy、z)}
+{Ex(x+Δx、y+Δy、z)-Ex(x+Δx、y、z)}
=∂Ex(x+Δx、y+Δy、z)/∂z}・Δz
+∂Ex(x+Δx、y、z)/∂y}・Δy
となるので、
Ex(x+Δx、y、z)-Ex(x、y、z)>>Ex(x+Δx、y+Δy、z+Δz)-Ex(x+Δx、y、z)
は言えそうにありません。

『ここでy、z座標の値も面内で変化しているが、それはΔy、Δzについて高次の寄与しか与えない。』

というのは言葉足らずで、
『ここでy、z座標の値も面内で変化しているが、平面A、B間におけるΔy、Δz、それぞれの変化
については、高次の寄与しか与えない。』ということだと思います。

式で表わせば、
{Ex(x+Δx、y+Δy、z)-Ex(x+Δx、y、z)}
-{Ex(x、y+Δy、z)-Ex(x、y、z)}
={∂Ex(x+Δx、y、z)/∂y}・Δy
-{∂Ex(x、y、z)/∂y}・Δy
={∂^2Ex(x、y、z)/∂x∂y}・ΔxΔy
(zについても同様)
となるからです。
...続きを読む

Qダイアディックの絶対値の定義とはなんでしょうか?

ダイアディックの絶対値は、どのように定義されているのでしょうか?

Aベストアンサー

ダイアディックについては私も夢中になって勉強しましたが、実際に物理学の中で応用したことはありません。知識だけなので、回答すべきじゃないのですが、他に回答がつかない様なので、少しでも参考になれば、と書かせていただきます。

そもそも、ダイアディックに絶対値というものが定義されているとは知りませんでした。Gibbsは不変量として、first、second、thirdを定義しているので、絶対値の定義として相応しいものがあるのなら、この中のどれか、ということになるでしょう。

firstはマトリクスでいうところのトレースに相当します。secondはなんとも言い難いですが、thirdはマトリクスでいうところのデターミナントに相当します。よって、ダイアディックに絶対値が定義されるのであれば、不変量のthirdが相応しいかと思います。

ご参考までに。

QE/ρ,(E^1/2)/ρ,(E^1/3)/ρについて教えて下さい!!

 材料について勉強しているのですが、E/ρ,(E^1/2)/ρ,(E^1/3)/ρの意味及び使い分けが分からなくて困っています。
 E:ヤング率、ρ:体積密度です。どうかよろしくお願いします。

Aベストアンサー

E/ρ、 E^(1/2)/ρ、 E^(1/3)/ρ

これらの式、どんなところで使われていましたか ?
何を求めるときに出てきた式でしょうか ?

不勉強かも知れませんが、私には心当たりがありませんので。

Q中学2年図形の証明についての質問です。定義、定理、仮定の違いとは…

非常に初歩的な質問ですみません。
今の私の解釈では・・・

【仮定】
・問題文に出てきた事象。
・結論にはなり得ない。

【定義】
・証明をしなくてもわかりきっている(知識として丸覚えしなければならない)特徴。
・問題を解く際、答えでここへたどり着く証明をすれば、その図形であることがいえる(例:~により、AB=CB(2辺の長さが等しい)なので三角形ABCは二等辺三角形である)。つまり、結論になり得る。

【定理】
・以前証明してはっきりした特徴。
・結論になり得る?

習った内容をすっかり忘れてしまい、結論になり得るのはてっきり「定義」のみかと思って問題集の証明を解いていたのですが、どうやら模範解答を読むと定理も結論にしていいようで…

つまりは・・・
・定義と定理の違いはさほどなく、両方とも図形の特徴(性質)である。
・よって、定義のみならず定理も丸覚えせねばならない。
ということになるのでしょうか?

図形の性質については小学校でも触れているので、定義と定理にさほど違いが無ければ、とりあえず特徴を片っ端から思い出して証明を解けばいい話なのでちょっと気が楽になっていいなあと思っているのですが・・・如何でしょうか?

非常に初歩的な質問ですみません。
今の私の解釈では・・・

【仮定】
・問題文に出てきた事象。
・結論にはなり得ない。

【定義】
・証明をしなくてもわかりきっている(知識として丸覚えしなければならない)特徴。
・問題を解く際、答えでここへたどり着く証明をすれば、その図形であることがいえる(例:~により、AB=CB(2辺の長さが等しい)なので三角形ABCは二等辺三角形である)。つまり、結論になり得る。

【定理】
・以前証明してはっきりした特徴。
・結論になり得る?

習った内容をすっかり...続きを読む

Aベストアンサー

「定義」は決められた事です。
例えば直角三角形の定義は「内角の1つが直角である三角形」。
決まったことなので、理由も何もありません。

それに対し、「定理」は証明により導き出された法則です。
例えば「ピタゴラスの定理」。
これは「~なので、ピタゴラスの定理により、三角形ABCは直角三角形である」
という風に証明に使うことができます。

「定理」はもちろん丸暗記していると便利ですが、証明により導き出すことができるので、必ず丸暗記しなければならないということはありません。

Qrot H = j + ∂D/∂tの第2項

マクスウエルの4番目の式、rot H = j + ∂B/∂tの第2項のイメージについて質問です。
例えば平行平板コンデンサの電極に向かって電線から充電電流が流れて行く場合、電線の周囲に発生する磁場を決めるのが第1項でコンデンサの電極付近の磁場を決めるのが第2項になるのではないかと思うのですが、これは正しいでしょうか?
正しい場合、第2項は電極付近の磁場がどうなると言っているのでしょうか?第2項が無いとどのような不都合が起きるのか、この例で説明できるのでしょうか?
正しくない場合、第1項、第2項のイメージを実感できる実例には、どのようなものがあるのでしょうか?

Aベストアンサー

>2)「∂D/∂tを無視したとき、コンデンサー回路などに対して、オームの法則が成り立つ」というのは、∂D/∂tはオームの法則で言うところの電流ではない、という意味だと捉えてよろしいでしょうか?

 そうです。∂D/∂tは真電流ではなく、従って荷電粒子の流れではありません。電場の時間変動に比例する量(比例定数は誘電率)です。しかしそれが磁場に対して、真電流と同じ効果を持つからには、∂D/∂tはたんなる数学的量ではなく、何らかの物理的実在を表していると考えざる得ない、というのが今の立場だと思います。それが、電磁場という物理的実在の電の側面を表している、という言い方です。

 お礼の1)(お礼を頂き、ありがとうございます)に関連するので、オームの法則について少し言わせて下さい。

 オームの法則はもちろん、オーム先生がR回路で導いたものです。R回路の電流は、起電力に比例し抵抗に逆比例する。抵抗は電線(導線)の長さに比例し、断面積に逆比例する、です。つまりオーム先生は最初から真電流の事しか相手にしていません。これは非常に良い近似である事が後にわかります(本当は電束電流∂D/∂tもあるから)。

 ところで、電池の+極から出発して-極にR回路を一周して戻った時、電圧は0になる必要がある事を、オームの法則の前半から導けます。そして導電材料が一様であれば、回路抵抗は導線の長さに比例するので、回路に沿った起電力の電圧降下は、回路長に比例する事を、後半から導けます。

 一方オームの法則と前後して、電圧とは、回路に沿った電場の積分値である事が知られます(積分パラメータは回路長)。従って電圧降下の傾きそのものが、電場だという事になります。電場の向きは、電圧降下を起こす方向、回路に沿った方向になり、導線内で電場は一定です。導線のような1次元材料でなく、3次元的に拡がった任意の導体内部の1点でも、局所的にこの状況が成り立つと仮定すると、導体材料内の任意の方向に対して、

  ρ j =E      (1)

が成り立ちます。ここでρは、3次元的に拡がった導体内部の一点で、「電流密度 j 」用に、回路抵抗値Rを、単位長さ単位断面積当たりに規格化した、電気抵抗率と言われる材料定数です。(Eは、その点での電場です)。ρとRには、オームの法則から、

  ρ=R・s/L

の関係があります。sは導線の断面積,Lは回路(一様抵抗)長です。ρの逆数σを電気伝導率と言い、(1)のρを移項して、

   j =σE      (2)

と書けるので、(2)より、3次元的な導体の各点の電流密度(真電流密度)は、その点に作用する電場に比例する、という結果になります。(2)が一般化されたオームの法則です。


>1)「実用回路では、 j に比べて∂D/∂tは非常に小さい」のは、細い電線とぶっとい電極とは太さが違うからと考えて良いのでしょうか?積分した∫jdsと、∫(∂D/∂t)dsは同じ値になるのではないかと思います。

 そうですよね。 j は電流「密度」であり、Dは正確には電束密度で、∂D/∂tは電束電流密度です。すいません。少し嘘を書きました。まず「電線内(導線内)」での j と∂D/∂tの大きさを比較しますが、コンデンサーの充電回路だと外部起電力(電池)Vがあって面倒なので、初期電圧V0で充電されたコンデンサーの放電回路で考えます。

 (2)から j は、電線内の電場Eに比例します。オリジナルのオームの法則から、E=V/Lです。ここでV<V0は、放電過程でのコンデンサーの電圧です。一方、電束電流密度は、

  ∂D/∂t=ε・dE/dt    (3)

と書けます。εは、電線の誘電率です。真空の誘電率をε0とすれば、実用的に導体と考えられる銅などの比誘電率χは、10~100程度なので、ε=10・ε0~100・ε0程度です。よって(2),(3)より、「導線内では」、

  |∂D/∂t|/| j |~ε/σ   (4)

が得られます。「~」は概ね等しいの意味です。(4)の根拠は、最も粗い近似として、|E|~|dE/dt|だろうです。例えば|E|の最大値に対して、大きすぎる|dE/dt|があったとすれば、その効果で|E|は最大値を超えたしまうはずだ、という発想で、物理では最も粗い近似として良く使われます。つまり、|dE/dt|≦k・max|E|となり、kは馬鹿みたいに大きくならないはずだ、という話です。

 そうすると(4)から、εとσの大きさ勝負です。MKSA単位系で言うと、ε0は10^(-12)程度なので、ε=10^(-11)~10^(-10)の範囲です。現実の金属でσは、10^8程度の大きさを持ちます。従って、

  |∂D/∂t|/| j |~10^(-18)   (5)

という事になり、|dE/dt|≦k・max|E|のkが多少大きかったところで焼け石に水であり、| j |に比較して、|∂D/∂t|は無視できるであろう、という話になります。(5)の比は、現実の物理的効果(結果は無次元)を表すので、MKSA単位系だけに限った話ではありません。どんな単位j系を採用しても、こうなります。ただしこれは、「電線内(導線内)に限った」話です。電線内に限れば、∂D/∂tは無視できます。


 次に極板間の電束電流です。コンデンサーの放電回路において、ある瞬間のコンデンサーの電圧Vに対し、導線内には、I=V/Rの真電流が流れます。それに対応して、コンデンサーの極板上には平均して、 j =I/Sの真電流の「電流密度」が存在します。Sは極板の面積です。この電荷移動の流れが、電線に集約されて放電が起き、電線の真電流 I を作ります。

 ここに「電束電流を含めた電荷保存則」を、極板体積に対する電荷量の流出入収支に適用すると、極板間には、 j =I/Sの電束電流密度がなければならない事になります。極板面積Sをかければ、電束電流 I =I/S×Sなので、極板間の電束電流は無視できない事になります。これが前回の「嘘」です。


 しかし実用回路において、コンデンサーの極板面積Sは、回路全体からみれば無視しうるものです。コンデンサーという「部品」は、回路全体からみれば小さいものだと思えませんか?。そうすると結局、回路全体としてはいたるところで電流 I が流れていた、という事になり、真電流,電束電流の違いを気にする必要はなくなります。電束電流の効果が、磁場に対して真電流と同じだからです。しかもコンデンサーの極板距離は、回路長に対してすごく短いのが普通です。


 以上が、実用回路理論の前提と思えます。 

>2)「∂D/∂tを無視したとき、コンデンサー回路などに対して、オームの法則が成り立つ」というのは、∂D/∂tはオームの法則で言うところの電流ではない、という意味だと捉えてよろしいでしょうか?

 そうです。∂D/∂tは真電流ではなく、従って荷電粒子の流れではありません。電場の時間変動に比例する量(比例定数は誘電率)です。しかしそれが磁場に対して、真電流と同じ効果を持つからには、∂D/∂tはたんなる数学的量ではなく、何らかの物理的実在を表していると考えざる得ない、というのが今の立場だと思います。...続きを読む

Q要件定義書とは?

すみません教えてください。
私は設計を全くしたことがなくて馬鹿みたいな質問かもしれませんが

設計を行う上で「要件定義書」をかかなければならないと
思うのですが、その要件定義書にはなにを記載すればいいのか
具体的に教えていただけないでしょうか?

さらに大雑把な質問ですが、案件を受注して仮に外注に仕事を
投げる場合、どこらへんまで、こちらで物を作ったらいいのでしょうか?

馬鹿みたいな質問ですがもしよろしければお教え下さい。

Aベストアンサー

「要件定義書」自体、さまざまな定義があるようですが、基本的にはクライアントから「RFP(Request For Proporsal)要求定義書」が提出されるケースもありますが、クライアント側にシステム部門がなかったり、システム知識がない場合には、要件のヒアリングをしたうえでヒアリング結果をまとめた「要件(要求)定義書」を作成します。いわゆる新システムの青写真になります。
記載項目は以下のもので網羅されていると思います。参考にしてください。
・開発案件名
・開発の目的と背景
・効果予測
・システム稼動開始予定時期
・開発案件概要
・全体実現イメージ
・導入後の見通し(データの増加予想など)
また、外注に振る場合は、要件のヒアリング作業から参画してもらい外注に要件定義書を作ってもらうこともよいと
思います。

Q電界Eと電束密度Dの積DEの単位は、電界が(V/m)で電束密度が(C/

電界Eと電束密度Dの積DEの単位は、電界が(V/m)で電束密度が(C/m^2)であるから、(CV/m^3)でいいのでしょうか?

Aベストアンサー

間違いではありませんが、CV=Jですので、J/m^3とした方が好ましいです。

なぜなら、DEは電場によるエネルギー密度(J/m^3)を与えるからです。


人気Q&Aランキング

おすすめ情報