はじめての親子ハイキングに挑戦!! >>

振動周期が T=2π√(m/k)
ばね定数が k=mg/l

なので、振動周期Tは
T=2π√(l/g)

結局、振動周期Tは、ばねの長さだけに影響される
と考えていいんでしょうか?

質量が関係するとは思うのですが...

A 回答 (7件)

<<結局、振動周期Tは、ばねの長さだけに影響される>。



そのとおりともいえるし、そうでないともいえます。

この場合、ばねの長さl はおもりの重さ(質量)できまりますね。

つまり、重たいおもりをつけたら、lが大きくなる。

ですから、このl のなかに、おもりの質量が「含まれて?」いるのです。

結局、ばねの長さに影響されるということは、おもりの質量に影響されているということです。

ところで、単振動の本質は

質量mの物体に 

f=-kx

というかたちの復元力がはたらいたときに生じる運動 ということです。

そのとき、その周期Tは

T=2π√(m/k)  

となるのですね。

いつでも、この基本式に立ち戻って考えてください。



おもりをつけて手をはなして、つりあいの位置からxだけのびたときにおもりにはたらく力が xmg/l

これがf=-kxの kx したがって k=mg/l

したがってT=2π√(m/k)=2π√(m/(mg/l))=2π√(l/g)

ということです。


ひもの長さ、重力加速度の大きさ、おもりの質量など のみにまどわされることはなく、式が導かれます。
    • good
    • 1
この回答へのお礼

詳しい解説有難うございました。大変参考になりました。

お礼日時:2006/11/04 18:11

k=mg/l についてですが、


これは次の条件を満たしているバネを使用していると言えます。

「バネ定数kのバネを垂直に持ち、質量mのおもりを下端につけた。
 バネが、自然長から l 伸びた時点で、おもりによる重力mgと
 バネの弾性力kl が釣り合った。」

この文を式にすると、次の通り。
mg-kl=0
∴k=mg/l


繰り返しますが、lはバネの長さではありません。

質量mのおもりによる重力とバネの弾性力が釣り合う時の
バネの伸びなのですよ。

ですから、やはり周期には、おもりの質量が効いています。
    • good
    • 0
この回答へのお礼

有難うございました。
大変参考になります。

これほど早く皆さんから回答頂けると思っていませんでしたので、大変感激しています。

また、解らないこと、不思議に思ったことがあったら投稿させていただきます。有難うございました。

お礼日時:2006/11/04 18:19

A5 です  補足



ここで「ばねの長さ」 というのは

もちろん、ばね全体の長さではなく、

「ばねの伸び」

のことです。

さきほどの議論を単振り子と較べてみると興味深いと思います。


おもりをぶら下げたばねはかりがどんな周期で振動するのか、

それは 

たとえば「ばねの伸び」が20cm であったときは、

ひもの長さが20cmの単振り子と同じですよ、

ということを表しています。

ですから、おもりが重くなるほど、ばねの伸びも大きくなる、(対応する単振り子のひもも長くなる)、だから周期も長くなる、ということです。

ついでにいいますと、

このばね振り子を月の世界に持っていって実験しても、周期は同じです。(ばねの伸びは短くなるのに!)
    • good
    • 1
この回答へのお礼

補足有難うございます。

お礼日時:2006/11/04 18:13

ご質問の周期の式は、建築で扱われる建物モデルの固有周期の公式と同一ですね.


この公式は運動方程式(ma+kx=0)から簡単に求めることができます.
公式を眺めればわかりますとおり、振動周期は質量に比例し、バネ定数に反比例します.

そこで問題となるのは、バネ定数の設定と思われます.

建物モデルの場合は、重力加速度を水平に加えたときの水平変位dからバネ定数を求めます.
k=mg/d
よって、振動周期Tは
T=2pai*sqrt(m/k)=2pai*sqrt{m/(mg/d)}=2pai*(d/g)
となり、水平変位に依存することになります.
ここでいう水平変位dは、振り子で考えた場合の振り子の長さlとは別物であることに注意が必要です.

ご参考までに.
    • good
    • 0
この回答へのお礼

ご回答有難うございます。
参考になります。

お礼日時:2006/11/04 18:12

バネ定数がそのとおりなら、周期はlだけの函数になりますね。

ただ、そのようなバネ定数を実現できるようなモデルはちょっと思いつかないのですがね。
    • good
    • 0
この回答へのお礼

ご回答有難うございました。

お礼日時:2006/11/04 09:45

ごめんなさい。

ちゃんと式をチェックしていませんが、
これって振り子の式じゃない。

振り子の振動周期が振り子の長さに依存するが、質量には依存しないのは有名な話。

ただし、振り子を単振動で近似できるのは、
振幅が小さいときだけ。

振幅が大きくなったら、質量に依存するかもしれません。
    • good
    • 0
この回答へのお礼

大変参考になりました。
有難うございました。

お礼日時:2006/11/04 09:47

「ばね定数が k=mg/l」ってことは、(そのバネに)つないでいる物体の質量に比例してバネが固くなるってことですよね。


それならバネの反発力も質量に比例するから加速度のmもキャンセルされるわけで、その積分により導出される振動周期Tからmが消滅するのは自明の理でしょう。

※むろんそんな都合の良いバネは仮想的な存在に過ぎませんが
    • good
    • 0
この回答へのお礼

回答有難うございます。
大変参考になりました。

お礼日時:2006/11/04 18:09

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q単振り子、ばね振り子のそれぞれの周期を教えてくだい

「地表で、ばねの長さを半分にし、単振り子は糸の長さを半分にして鉛直面内で振らせるとき。

ただし、ばねの長さを半分にするとばね定数は2倍になる。」

この問題の単振り子、ばね振り子のそれぞれの周期を教えてください。

Aベストアンサー

「地表で、……振らせるとき。」で切れてしまっていて、問題がはっきりしませんが。


最後にある「それぞれの周期」がいくらになるかは、具体的な条件(ばね定数とか糸の長さとか)がわからないと答えられないので、

……振らせるとき、元の周期の何倍になるか

というようなこととして、回答します。

ばね振り子の周期は T=2π√(m/k) なので、k が 2倍 になると T は1/√2倍になります。
単振り子の周期は T=2π√(L/g) なので、L が 1/2 になると T は 1/√2倍になります。

Q固有振動数と振幅の関係

素人ですみません。
固有振動数と振幅の関係を教えて欲しいのですが、
例えば、固有振動数が小さい振幅が小さく
固有振動数が大きいと振幅も大きくなる
といったものがあるのかどうなのか?
また、無関係なのか
分かりやすく教えて下さい。

Aベストアンサー

#2の方のおっしゃるように,問題設定によるところがあります.
例えば,1つの物体を鳴らしたときは,基本振動に比べてその整数倍の高調波は振動数が高いものほど通常小さくなっていき,それらの混ざり具合が音色になります.

質問者さんの問題は多分固有振動数の異なる物体を鳴らしたときにどうかという趣旨と解釈したのですが,地震の例でも分かるように,柔らかい地盤(固有振動数は小さい)と硬い地盤(固有振動数は大きい)があったとき,震源からの距離が同じでも,地震波の周期(つまりは振動数)と近い値の方が揺れが大きくなって被害が大きくなりやすい傾向があります.
もし質問の意図を取り違っているようなら補足下さい.

Q単振動

こんばんは。高校物理の単振動に関する問題です。
[問題]
振幅A、振動数fの単振動をしている物体の、振動の中心を原点としたとき、時刻tにおける物体の変位xを表す式を記せ。ただし、時刻t=0における変位はAであったとする。

[解答]
この解答として、単振動の変位はx=Asin(ωt+Φ)で与えられる。ω=2πfであり、周期t=0における変位はAであるから、Φ=π/2となり、x=Acos2πft 

とありました。ここで質問ですが、どうして単振動の変位は
x=Asin(ωt+Φ)という式が導き出されるのでしょうか?具体的に、Φとはどういうものですか?

 よろしくお願いします。

Aベストアンサー

[少し難しい解説]
もし高三で数学IIIを理解しているのなら、x=Asin(ωt+Φ)をtで二回微分してみてください。ωをうまく定めれば(具体的にはω=sqrt(k/m))、xが単振動の運動法方程式mx''=-k xを満たす解となっていることが分かるはずです。二階の微分方程式を解くには積分が二階必要で、数IIで習ったように二階積分すると一般をあらわすには二個の積分定数が必要です。(AとΦ)
(これが分かれば最高ですが、もしこれが分からなくても気にしないでください。勉強を続ければそのうち分かります)

[簡単な解説]
単振動がsinあるいはcosで表せる事を認めたとします。
振動を特徴付ける量は何でしょうか?
1.まず振幅を汁必要があります。これがAです
2.それから振動の速度の情報も必要があります。これがωです。
3.実はこれだけでは足りず、振動を完全に記述するには、振動開始の時(t=0)のときにどの位相にあったかをしる必要があります。バネの問題なら、t=0のときにバネが伸びているときに手を離す問題や、あるいは釣り合いの位置から何かではじいて振動を開始させる問題など、いろいろ考えられ、これを区別する必要があります。少し考えればΦの値を変えることで、これが式の上で再現できるのが分かるのではないでしょうか?
バネが伸びた状態から振動をはじめる、あるいは振り子が高い位置から振動をはじめるようなときは、x=Acos(ωt)になるのは参考書にも書いてあるでしょうが、実はΦ=90度 or pi/2ラジアンとすることで、同じ事が再現できます。つまりx=Asin(ωt+Φ)で全ての場合が再現できるのです。(中途半端な位置から振動をはじめた場合などもうまくΦを選べば大丈夫です)

こう考えると、
> ちなみに、参考書には単振動の変位に関する公式はx=Asin(ωt)
> となっておりますが、x=Asin(ωt)に対して、どのような条件付けがされるとx=Asin(ωt+Φ)になるのでしょうか?

この参考書の記述は一般的には正確ではなく、単振動の変位の公式はx=Asin(ωt+Φ)とするべきです。ではどの条件のもとでx=Asin(ωt)になるかが問題になります。それはΦ=0の時です。これは物理的にはバネが釣り合いの位置から振動をはじめたり、振り子が最下点から上昇することで振動をはじめたりしたときです。サイン関数のグラフを思い浮かべてみてください。

参考になれば幸いです。

[少し難しい解説]
もし高三で数学IIIを理解しているのなら、x=Asin(ωt+Φ)をtで二回微分してみてください。ωをうまく定めれば(具体的にはω=sqrt(k/m))、xが単振動の運動法方程式mx''=-k xを満たす解となっていることが分かるはずです。二階の微分方程式を解くには積分が二階必要で、数IIで習ったように二階積分すると一般をあらわすには二個の積分定数が必要です。(AとΦ)
(これが分かれば最高ですが、もしこれが分からなくても気にしないでください。勉強を続ければそのうち分かります)

[簡単な解説]...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Qバネ定数のことに関して

バネにはバネ定数があって、荷重に比例してバネの伸び(縮み)量が変化することは学生時代に学びました。
そこでどなたか分かる方がいましたら教えていただきたいのですが、荷重をかけるスピードがものすごく速くなった場合にもバネ定数は保たれるのでしょうか?感覚的には本来のバネ定数よりも大きくなり、硬くなるような気がするのですが。

Aベストアンサー

 
 
>> 荷重をかけるスピードがものすごく速くなった場合、感覚的にはバネ定数が大きくなり硬くなるような気がする <<

 図は板バネですが、コイルバネも伸ばして考えれば同様です。

   ┃              ↓押す
 壁┠────────── 
   ┃   棒 状 の バ ネ

 バネ定数 k は下式で定義されます。Xは変形距離、Fは力。

   F = k・X  …(1)

右端をゆっくり押せば、棒の全長が分担して撓(たわ)んで上式が支配的ですが、ご質問の「加重がものすごく速い」、例えばハンマーで叩いたときの撃力パルスでは、その瞬間のバネ材で支配的なのは (1)式ではありません。「速い変形」の言葉どおり「静的な変位ではない」のです。「動的な変位=速度V」と力Fの関係式

  F = Z・V  …(2)

が支配的になってます。Z はバネ材の機械インピーダンスで、大まかには z=√(密度・剛性率) 程度です。 ハンマーの撃力によって変形速度がどうなるのかはバネの材質と形状寸法に依ります。


バネ定数が見かけ大きくなるような話とは全くちがうのです。相対論的質量のようなモデルに填らないで。


 電気の方での例え話;
テレビのアンテナとつながってる同軸ケーブル。あれを「50オームのケーブル」とか言うときの「50オーム」は、上記の「撃力パルス印加時の」インピーダンスと同じです。ものすごく速い電気的変化では その値になるのです。 しかし直流テスターで測ると1個のコンデンサにしか見えません。
 バネも同様に、静的と動的では別ものに変身します。



 ということで、ご質問の、
バネが一瞬硬くなるところは正しくて、その原因をバネ定数に求めてしまうところが外してます。 考えの基礎に置くモデルとしては、学校で習うような単純に剛体に撃力を与える構図ではなく、

  ─●─バネ─●─バネ─●─バネ─●─…
   原子    原子    原子     原子

のモデルです。静的な(1)式は全バネに均等分担した構図、動的な(2)式は図を縄のように上下に揺すった横振動が伝わる速さが無限大でないことによる伝達の遅れによる現象です。機械インピーダンスは この図を運動方程式で書いたときの係数で登場します。
バネに相当するのは金属原子イオン同志の間に存在する引力です。と言っても同種のプラスイオン同志が引き合うわけではなく、周囲に大量に存在する自由電子が織りなす力です。
 
 

 
 
>> 荷重をかけるスピードがものすごく速くなった場合、感覚的にはバネ定数が大きくなり硬くなるような気がする <<

 図は板バネですが、コイルバネも伸ばして考えれば同様です。

   ┃              ↓押す
 壁┠────────── 
   ┃   棒 状 の バ ネ

 バネ定数 k は下式で定義されます。Xは変形距離、Fは力。

   F = k・X  …(1)

右端をゆっくり押せば、棒の全長が分担して撓(たわ)んで上式が支配的ですが、ご質問の「加重がものすごく速い」、例えばハンマ...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qばねによる弾性エネルギーと力学的エネルギー。

上端を固定したばねに、質量mのおもりをつけた。おもりを自然長の位置から静かに下げていくと、のびがaのときにつり合った。重力加速度の大きさをg、重力による位置エネルギーの基準点を自然長の位置とする。
(1)つり合いの位置での力学的エネルギーをaを使って表せ。
(2)再び自然長の位置までおもりを持ち上げ、そこで急に手を離したところ、
おもりはつりあいの位置を中心に上下に単振動をした。つりあいの位置でもおもりの速さを求めよ。
(3)ばねの最大の伸びはいくらか。

まず(2)から質問。回答では自然長とつりあいの位置で、力学的エネルギー保存の法則を使って

mg×0 + 1/2m×0^2 + 1/2k×0^2 = mg(-a) + 1/2mv^2 + 1/2ka^2

となっていました。
この右辺は簡単に理解できます。つりあいの位置での全力学的エネルギーです。
しかし左辺、これは自然長つまりばねに物体を取り付けてない、図で言う一番左の状態の全力学的エネルギーですよね?

右辺は物体を付けた状態の時のエネルギーなのに、左辺はそもそも物体を付けてない時の状態の力学的ねるぎーです(とはいっても0ですが。)

これが解答である以上私が間違っているのですが、おかしいと思います。

つまり、力学的エネルギーの総量が一番左の図とつりあいの図では違うから、力学的エネルギー保存則が使えないと思ったのです。
それに、つりあいの位置での力学的エネルギーの総量が=0 なんてこれも理解しづらい。
物体もついているから負の位置エネルギーもあるだろうし、ばねの弾性力もあると思います。
なのに0と等しいなんてわかりません。

次、(3)の問題です。回答では

ばねの最大の伸びをXとすると、最大の伸びのとき速さは0だから(わかる。)

mg×0 + 1/2m×0^2 + 1/2k×0^2 = mg(-X) + 1/2m×0^2 +1/2kX^2

右辺はわかります。最大の伸びのときの全力学的エネルギーです。

しかしこれまた、左辺が自然長のときの全力学的エネルギーです(0ですが)。
(2)と同じで、自然長の時は物体を付けていないから、弾性力のエネルギーも、位置エネルギーもないので、このときと最大の伸びのときの力学的エネルギーが等しいなんて思えません。
(状況が違うから。)

最後になりましたが、長々としたのはかなり自分も考えましたが、分からない部分がはっきりつかめないので、しつこく書いてみました。

解決して次の問題に行きたいと思っていますので、物理に自身のある方、この問題が分かる方
誰か教えてくれる方はおられませんか。
よろしくお願いします。

上端を固定したばねに、質量mのおもりをつけた。おもりを自然長の位置から静かに下げていくと、のびがaのときにつり合った。重力加速度の大きさをg、重力による位置エネルギーの基準点を自然長の位置とする。
(1)つり合いの位置での力学的エネルギーをaを使って表せ。
(2)再び自然長の位置までおもりを持ち上げ、そこで急に手を離したところ、
おもりはつりあいの位置を中心に上下に単振動をした。つりあいの位置でもおもりの速さを求めよ。
(3)ばねの最大の伸びはいくらか。

まず(2)から質問。回答では自然長...続きを読む

Aベストアンサー

数学(値)としての等しさと物理的状態の等しさを混同されているのが根本原因だと思います。

■質問者様の疑問その1 問題(2)
>しかし左辺、これは自然長つまりばねに物体を取り付けてない、図で言う一番左の状態の全力学的エネルギーですよね?

 計算結果の総量が0になるので数値はそうなります。ただし、あくまで解答の左辺は真ん中の図のように重りを付けた状態で、自然長位置に来た時の式です。左の図の状態と「値」が等しくなってしまう「0」になるように条件を設定しているため混乱するのです。なぜ左の図と等しくなるのか。1つは「自然長の位置までおもりを持ち上げ、そこで急に手を離した」こと。2つ目は「重力による位置エネルギーの基準点を自然長の位置」としていること。
 摩擦や減衰を無視すると、このばねは永遠に自然長位置を頂点として振動を続けます。最頂点の位置に来た時、題意から変位は基準点のため0、速度も0、ばねの自然長からの変位も0になるので左辺の状態になります。この瞬間にサッと重りを取り除くと左の図の状態になります。しかし実際には重りが付いていますので、次の瞬間に重力によりばねが伸びていきます。ここが左の図と問題(2)中の重りが最頂点に来たときの違いです。瞬間的な値は等しいですが状態は異なります。

>つまり、力学的エネルギーの総量が一番左の図とつりあいの図では違うから、力学的エネルギー保存則が使えないと思ったのです。

 真ん中の図のばねに重りがついた状態での、自然長位置(最高点)とつりあい位置では保存則が成り立っています。
 瞬間的な値が同じになるだけで、左の図と真ん中の図の間ではエネルギー保存則は成り立っていません。重りの着脱には外力(この場合は人の手ですかね)が必要ですし、重りのない状態ではばねをaの位置まで伸ばすエネルギーは在りません。


■質問者様の疑問その2 問題(2)
>それに、つりあいの位置での力学的エネルギーの総量が=0 なんてこれも理解しづらい。物体もついているから負の位置エネルギーもあるだろうし、ばねの弾性力もあると思います。なのに0と等しいなんてわかりません。

 この場合の(数字の0)≠(存在しない)です。ここが物理現象と式の間の分かりにくさですかね。ここではイコールで0になるのはつり合っていることを表しています。物体による位置エネルギーとばねの弾性力が反対向きにつり合っている状態です。(力学的エネルギー)=0と見ると分かりにくいのであれば、(重力による位置エネルギー+運動エネルギー)=(ばねの弾性力による位置エネルギー)と移項すれば分かりやすいでしょうか。

■質問者様の疑問その3 問題(3)
>しかしこれまた、左辺が自然長のときの全力学的エネルギーです(0ですが)。

これも問題(2)と同様です。数値的には0になりますが、あくまで左辺は重り付きの状態を示しています。



 私の説明で分かりにくければすみません。その時は基準点の位置を、重りを付けた時のつり合いの位置にするなど仮定を変更すると分かりやすいと思います。
 重りの有無に関係ない数値(変位や速度)が0になるので数学上0となり等しい状態に見えるだけで、重りの有無は明確な物理状態の違いです。逆に言えば、力学的エネルギーの保存則のある一状態だけでは運動系の全体状態を記述できないのです。
数値上納得できない場合、仮定を色々おきかえて記述してみると分かったりします(ex.基準点を変えたり)。

参考URL:http://blog.livedoor.jp/aritouch/archives/2943111.html

数学(値)としての等しさと物理的状態の等しさを混同されているのが根本原因だと思います。

■質問者様の疑問その1 問題(2)
>しかし左辺、これは自然長つまりばねに物体を取り付けてない、図で言う一番左の状態の全力学的エネルギーですよね?

 計算結果の総量が0になるので数値はそうなります。ただし、あくまで解答の左辺は真ん中の図のように重りを付けた状態で、自然長位置に来た時の式です。左の図の状態と「値」が等しくなってしまう「0」になるように条件を設定しているため混乱するのです。なぜ...続きを読む

Qケプラーの第3法則

ケプラーの第3法則の記述を見るとよく、a3乗/T2乗=k(a:半長径、T:公転周期、k:比例定数)という記述を見るのですが、太陽の惑星についてこの式に当てはめた値は約1になるのに、なぜ敢えて"k"や"一定"という記述をするのですか?なぜ約1になるという記述はないのですか?教えて下さい。

Aベストアンサー

蛇足ですが。
質問者の疑問は、もっともだと思います。太陽系での観測データから導き出した式ですので、約1でもOKです。
だけども、法則という言葉を使いますと少し事情がかわるのです。
「法則」を辞書で調べますと「法則」とは、一定の条件のもとでは常に成り立つとものと考えられる、自然の事物相互の関係。
とあります。だからケプラーの第3法則という表現では、"k"や"一定"という記述をするのです。
もし、ケプラーの第3測定結果とかと表現するのでしたら、
a3乗/T2乗≡1 で十分だと思います。
ということかなと思います。
以上


人気Q&Aランキング