出産前後の痔にはご注意!

ガラスの構造で網目形成酸化物、網目修飾酸化物、中間酸化物がどのような役割をしているのですか?
教えて下さい!!

A 回答 (1件)

網目形成酸化物は、それ自身でネットワークを形成できる酸化物です。

例えば、SiO2やB2O3。修飾酸化物は、それ自身ではネットワークを形成できない酸化物のことで、Na2Oなどがあります。そして、単独ではネットワークを形成できないが、網目形成酸化物と共に加えると網目を形成し、また修飾酸化物のようにネットワークを修飾したりできる酸化物を中間酸化物といいます。これにはAl2O3などがあります。
    • good
    • 1
この回答へのお礼

回答ありがありがとうございます!
参考になりました!

お礼日時:2006/11/21 23:13

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q融点とガラス転移温度の違い

融点とガラス転移温度の違いが良く理解できません。分かりやすく教えてください。

Aベストアンサー

高分子やってるものです。おそらく質問にでてくる融点は普通いわれている融点ではなく、高分子特有のTmといわれているほうの融点ですよね?
板ガムを考えていただけるとわかりやすいと思います。ガムってそのまんまだと引っ張ってもぶちぶちきれちゃいますよね?でも口の中でかむとひっぱっても伸びるようになります。この引っ張っても伸びる性質に変わる温度が高分子における融点です。次にガムを寒いところもしくは冷凍庫に入れてみてください。常温のガムは折り曲げてもたたまれるだけなのですが、低温におかれたガムを折り曲げようとすると割れてしまうと思います。このぱきぱきの状態になってしまう温度がガラス転移温度です。
食品保存容器とかラップに耐熱温度がかかれていると思いますが、よくみるとなぜか上と下の両方の温度限界がかかれていると思います。上の方の温度限界(融点)になると溶けてしまうのはまあ想像がつくのですが、下の方の温度限界(ガラス転移温度)になるとぱきぱきになって容器が割れてしまうので書かれているのです。

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。

Qガラスと結晶の違いについて

ガラスと結晶の違いをSiO2の場合を例に説明し,構造の違いが物性にどのような影響を与えるか?という質問の回答に困っています。教科書等にも回答が見当たりません。できるだけ詳しく教えていただければ幸いです。よろしくお願いします。

Aベストアンサー

ウィキペディアの「ガラス」のページを貼り付けて置きました。中のリンクを辿ってガラスについて調べてみて下さい。
二酸化ケイ素の結晶は石英です大きいのが水晶。水晶も高温で溶融すると石英ガラスという状態になります。
石英の結晶構造はケイ素が四つの炭素と配位した「ダイアモンド構造」です。
ガラスになるとこの構造が崩れSi上に=Oが一つにあとは-O-Si-O-Si-と並んでその高分子が絡み合った形になっています。
ガラスを長い時間軟化点近くで加熱し続けると一部ずつ結晶化してきます。
ただ、ガラスの場合多くはケイ酸ナトリウムなどの珪酸塩になっているので完全に二酸化ケイ素の結晶になるわけではありません。ケイ酸塩の場合前記のSi-Oの酸素に陰電荷が乗っている形です。
金沢大学の「ガラス玉と水晶玉」に関する面白い見分け方。
http://earth.s.kanazawa-u.ac.jp/ishiwata/crystal.htm
東工大の石英と石英ガラスの図
http://www.op.titech.ac.jp/lab/okui/lecture/ms/3rd/Slide02.html
などなど…。
石英、ガラス、アモルフォス、非晶質、ガラス転移点(高分子の)などのキーワードで牽くと沢山出て来ます。
では頑張ってネット上を泳いで下さいなー。^^

参考URL:http://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%A9%E3%82%B9

ウィキペディアの「ガラス」のページを貼り付けて置きました。中のリンクを辿ってガラスについて調べてみて下さい。
二酸化ケイ素の結晶は石英です大きいのが水晶。水晶も高温で溶融すると石英ガラスという状態になります。
石英の結晶構造はケイ素が四つの炭素と配位した「ダイアモンド構造」です。
ガラスになるとこの構造が崩れSi上に=Oが一つにあとは-O-Si-O-Si-と並んでその高分子が絡み合った形になっています。
ガラスを長い時間軟化点近くで加熱し続けると一部ずつ結晶化してきます。
...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qダイヤモンドの構造因子

ダイヤモンドの構造因子を求めると
f{1+exp(-πi(h+k))+exp(-πi(k+l))+exp(-πi(l+h))+exp((-πi/2)(h+k+l))+exp((-πi/2)(3h+3k+l))+exp((-πi/2)(3h+k+3l))+exp((-πi/2)(h+3k+3l))}
となったのですが、この構造因子が0になる指数がうまく求められません。どのように考えればよいでしょうか。

Aベストアンサー

面心立方の原子位置は

(0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0, 1/2, 1/2)

これをベクトルでri (i=1-4)と書くことにします.

ダイアモンド格子はこの座標に(1/4,1/4,1/4)を加えた位置に同種原子を置くことで構成されます.そこで(1/4,1/4,1/4)をベクトルdと書くことにすると,追加した原子の位置ベクトルはd+ri (i=1-4).したがって,逆格子ベクトルをGとして構造因子は

S = f Σ[i=1-4] { e^{-2πi G・ri} + e^{-2πi G・(d+ri)}
= f (1 + e^{-2πi G・d} ) (Σ[i=1-4] e^{-2πi G・ri})
= (1 + e^{-2πi・(h+k+l)/4}) S(FCC)

従って消滅則はFCCの消滅則に加えて前の()が0になる条件として

2π(h+k+l)/4 = (2n+1)π 従って h+k+l = 4n+2

が追加になります.

Q焼結助剤について

セラミックを焼結する段階で焼結助剤を少量加えるとセラミックが緻密化すると文献にあったのですが、どのような機構で緻密化が起こるのか知りたいです。また、酸化マグネシウムが焼結助剤としては一般的らしいのですがその理由も知りたいです。どちらか片方でもかまいませんのでどなたか教えてください。よろしくお願いします。

Aベストアンサー

焼結助剤は、基本的に焼結したいセラミックスよりも融点の低い材料を用います。
イメージとしては、焼結の際、セラミックス粒子と焼結助剤が共存した状態から
温度を上げていくと、焼結助剤粒子のみが融解し、セラミックス粒子間に液相を生じます。
その液相がセラミックス粒子同士を引き付け、隙間を埋めることで緻密化します。
ただし、焼結助剤とセラミックスが反応してしまうと、逆に別なものになってしまうので、緻密化しません。
詳しいことは解かりませんが、恐らくMgOは他のセラミックスと反応しにくいのではないかと考えられます。

QX線のKαって何を意味するのでしょう?

タイトルのまんまですが、XRD、XPSなどで使われる特性X線のCu-Kα線、Mg-Kα線のKαってなにを意味するものなのでしょうか?
ちょっと気になった程度のことなので、ご覧のとおり困り度は1ですが、回答もきっとそんなに長くならないんじゃないかと思うのでだれか暇な人教えて下さい。

Aベストアンサー

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻やM殻の電子は安定した状態を保とうと、K殻へ落ち込みます。このとき(K殻のエネルギー)-(L殻のエネルギー)に相当するエネルギーがあまるので、これがX線となりこのエネルギーをもつX線が発生します。

そこで、potemkineさんの質問にあるとおり、Kαとかの命名法ですが、Kに相当するものは電子が衝突して飛び出した殻を示し、αは飛び出した殻に対していくつ外側の殻から電子が飛び出したのかを示すもので、1つ上からならα、2つ上ならβ。3つ上ならγといったようにあらわします。
例えば、K殻の電子が飛び出し、そこをM殻が埋めた場合(2つ上の準位)はKβ、L殻の電子が飛び出しそこをM殻が埋めた場合はLα
ちなみに下からK殻、L殻、M殻、N殻の順番です。

エネルギーや半値幅(エネルギーの広がり)の面から一般に用いられてるX線は、AlKα、CuKα、MgKαなどです。

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻や...続きを読む

Qホッピング伝導とはどんなものですか?

電界をかけてその電荷が移動する「電気伝導特性」には物質ごとに色々とあると思います。金属中や半導体中の電気伝導特性は大学の固体物理等でなじみが深いのですが、ホッピング伝導とは具体的にどんなものをさすのかちょっとわからないので教えてください。

分かっているのは「連続ではない状態を電荷がホッピングしながら伝導していく」といった事くらいで、もっとちゃんと知りたいと思っています。特に

・ホッピング伝導のメカニズムは何か。
・そのメカニズムからホッピング伝導を数式化するとどうなるか。
・ホッピング伝導と言われる物質は具体的にどんなものがあるのか。
・この物質はホッピング伝導である。と言い切るには実験的にどのような電気伝導特性を示せばいいのか。

以上四点を知りたいと思っているのですが、ホームページ検索では表層しか分かりませんし、手元の書籍にはヒントは見当たりませんでした。

もしも良い書籍、およびホームページをご存知でしたら教えていただけるだけでも嬉しいのでよろしくお願いいたします。

Aベストアンサー

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化してあったのは,確か電気学会で出している「誘電体現象論」です。
半導体物理の本(SzeのPhysics of Semiconductor Devicesなど)にも出ていると思います。
-------------
PF型の伝導か否かは,測定した電流-電圧特性をPFプロットし,そのグラフの勾配が
所定の値になっているかどうかで判別できたと思います。
今,手元に本がないので正確なことが記述できません。本を見ていただくのが一番と思います。
または,WEB検索で「プール フレンケル」,「Poole Frenkel」と入力すれば,
関連のWEBサイトが見つかると思います。

以上

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化して...続きを読む

Q微結晶、ガラス、アモルファスの違いは?

微結晶、ガラス、アモルファスの違いは何でしょうか?直感的には、より短範囲規則状態に近付くように思うのですが定義も含めてどのように違うのか、また分析方法としてはどのような手法があるのかなどについて教えて下さい。よろしくお願いします。

Aベストアンサー

ガラスとアモルファスの定義において明確な差はないものと思います。ですから,人によって,アモルファスと言ったり,ガラスと表現していると理解しています。
微結晶は,その名の通り,微細結晶構造の周期性があるわけですから,粉末X線回折で結晶格子の面間隔に応じた回折パターンが得られます。これに対し,ガラス,アモルファスでは,ハローパターンと呼ばれる明瞭な回折ピークのない,低角度でブロードな回折図形が観察されます。
ガラス,アモルファスともに準安定状態ですから,再加熱によって,結晶化が起りやすくなります。
さて,アモルファスであるシリカゲル粉末に,結晶である石英の粉末を混ぜた混合物は,結晶質でしょうか?非晶質でしょうか?結晶質と非晶質は連続的に変化することが可能で,明確な境界はありません。したがって,その物質のどの特徴を活かすか(非晶質性を活かすならアモルファス)で呼び方がかわってくるもの推測します。

Q質量パーセントと重量パーセント

質量パーセントと重量パーセントの単位はそれぞれ違うのでしょうか?
mass% wt%というのがありますが、それでしょうか?
また、このmass%とwt%の違いも教えていただけませんか?

Aベストアンサー

質量パーセント濃度と重量パーセント濃度は同じで、mass%とwt%も同じことを表わします。
でも、混ぜて使ってはいけません。
「質量」とmass%を使うほうが望ましいと思います。


人気Q&Aランキング