例 三角形(a,b,c)の a 辺の角度を取得する計算方法を教えて下さい。

a x = 200 y = 100
b x = 1500 y = 100
c x = 1500 y = 900

A 回答 (3件)

この場合角bは直角なので、


tan(a)=BC/AB=800/1300=8/13
なので、
a=arctan(8/13)
とすることもできますね。
    • good
    • 0

やっぱり複素数利用。



a(200+100i)
b(1500+100i)
c(1500+900i)
角bac = θ

(b-a)(cosθ+isinθ) = k(c-a)

あとは実部と虚部をわけて、計算するとtanθの値が出てきます。
(やっぱり言ってること同じか・・・)
    • good
    • 0

求める角度をθとします。

a点のxをax, yをayと書きます。以下同様。
px=bx-ax, py=by-ay
qx=cx-ax, qy=cy-ay
を計算し、
|p| = √(px^2 + py^2) (^2は二乗です。)
|q| = √(qx^2 + qy^2)
とすれば
cosθ=(px qx + py qy) /( |p| |q|)
です。だから
θ=arccos((px qx + py qy) /( |p| |q|))
    • good
    • 0
この回答へのお礼

別質問ともども有り難うございました。
又よろしくお願いします。

お礼日時:2001/01/13 19:20

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q三角形の角度を1つ固定して残り2つを変える変換

三角形の角度を1つ固定して残り2つを変えていくような変換は何変換になりますか?
合同変換や相似変換は論外として,位相変換だと三角形が維持できなくなるので….

Aベストアンサー

三角形の形を維持した変換なら、アフィン変換でしょうね。

ただし、角度を1つ固定するというわけにはいきませんが。

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

QOpenCVで画像をある角度から見たように変換する

OpenCVを使い、画像をある角度から見たように変換したいと考えています。

しかし、cvGetPerspectiveTransform関数では4つの頂点座標を入力することによって変換行列を作成しているみたいなんですが、角度の概念がなくどうしようか困っています。
私がしたいのは任意の角度からみたように画像を回転させたいのでどうすればいいかわかりません。


言いたいことがうまく伝わらないかもしれませんがよろしくお願いします。

Aベストアンサー

角度だけで距離は関係ないってことは平行投影?
それなら回転と拡大縮小を組み合わせるだけ。
透視投影なら、それ用の関数はないみたいだから、変換行列の公式に値を当てはめる。

Q2直線 x/a+y/b=1, x/a+y/b=2(a>0, b>0)の

2直線 x/a+y/b=1, x/a+y/b=2(a>0, b>0)の間の距離を求めよ。

という問題の解説に、

2直線は平行だから、第一の直線上の点(1、0)を通る。よって、ここからbx+ay=2abまでの距離を求める

と、ありました。

なぜ(1,0)を通るのですか?

Aベストアンサー

誤記なんてレベルでは済まないですよ。
 A.2直線は平行である。
 B.第一の直線が点(1,0)を通る。or B'.第一の直線上のどこかの点を第二の直線が通る。
 C.AがB(またはB')の根拠になっている。
このうち正しいのはAだけです。

第一の直線は点(a,0)を通る。
また、2直線は平行だから、点(a,0)から第二の直線までの距離を求めればよい。
とでも書くのなら良いのですが、論理が滅茶苦茶ですね。

Q9mm厚、MDF アクリルの角度切り 30度から5度刻み

小口面を角度切りをするよい方法を教えて頂けないでしょうか?

切りたいものは9mm厚 幅275のMDF材です。
できればアクリル8mm厚 幅275も切れたらと思っています。

切りたい角度が30度、35度、40度・・・85度、90度といった感じです。
90度から45度までは、丸のこでなんとかできるのですが、
それより浅い角度はどうしたら良いでしょうか?
精度は±0.5度くらいでできればと思っています。

ジグを作ってトリマーなどで削るのがよいでしょうか・・・
宜しくお願い致します。

Aベストアンサー

>これは薄いと難しいということですよね?
薄い場合だと、角度を正確に出すのが難しくなります。要するに精度の問題ですね。
角度とは日本の線のなす角度ですから、その片方の線の長さ(つまり今回は厚み方向)が短いと精度を出しにくいということです。

長い物同士のほうが精度を出しやすいのです。
角度の墨付けは直接角度は断面にしかかけませんが、それは難しいし加工のときに役には立ちませんから、長さの測定で角度を明示します。
つまりtan(θ)=厚み/ベベル長さ
ですから、厚みが既知なら、ベベル長さの線を描けばよいのです。
このとき厚みが厚いほうがベベル長さも長くなり、精度を出しやすくなります。

>数が多いのと、カンナでのMDFの平面、ちょっと自信がありません。
そうですか。だとすると、材料の大きさはどの程度ですか?
加工面が上になるように材料を垂直に立てた状態で加工できるのであれば、電動丸鋸でも出来ますよ。
つまり45度以上は水平に置いて加工し、45度以下の鋭角は垂直に置いて加工します。
このときに必要なのは、2x4と2枚の合板などで、直角ジグを作ることです。
直角ジグの片方の平面を作業台に固定すると、もう片方は垂直な面になります。
その状態でMDF材料を垂直面に対してクランプで固定します。

このときジグの水平面よりわずかに頭を出すようにして固定し、あとは丸鋸で斜めカットします。

数が多いとのことなので、上記方法がよいかと思います。材料の長さが長いと垂直に立てての加工が出来ないのですけど。

ちなみに丸鋸を使う場合には材料の厚みは厚くしなくても、事前に丸鋸の角度を厚みのある材料で試し切りして角度を合わせればよいです。

>これは薄いと難しいということですよね?
薄い場合だと、角度を正確に出すのが難しくなります。要するに精度の問題ですね。
角度とは日本の線のなす角度ですから、その片方の線の長さ(つまり今回は厚み方向)が短いと精度を出しにくいということです。

長い物同士のほうが精度を出しやすいのです。
角度の墨付けは直接角度は断面にしかかけませんが、それは難しいし加工のときに役には立ちませんから、長さの測定で角度を明示します。
つまりtan(θ)=厚み/ベベル長さ
ですから、厚みが既知なら、...続きを読む

QA={Φ,{{a,b},{a,c}}} B={Φ,{a,b},{a,c

A={Φ,{{a,b},{a,c}}} B={Φ,{a,b},{a,c}}のとき、A∩Bは{Φ}なのかそれとも{a,b}などを含むのかどうかがわかりません。 わかる人がいらっしゃるなら教えてください。お願いします。

Aベストアンサー

落ち着いて考えれば分かるはず。
ただ、若干の慣れは必要かも・・・。

・考え方
Aの元は、Φと{{a,b},{a,c}}}の2個。
Bの元は、Φと{a,b}と{a,c}の3個。
共通するのは、Φだけ。

よって、A∩Bの元はΦだけ。
つまり、A∩B={Φ}。

Q%を角度に変換するには…

関数電卓の使用方法について教えてください。
パーセント(%)を角度(°)に変換したいのですが、どうすれば良いでしょうか?
(例)3.2%の上昇勾配を角度にすると何度?といった感じです。
ご教示の程よろしくお願い致します。

Aベストアンサー

こんばんは。

関数電卓の使い方については、すでに回答がありますので、
知っておくと便利な考え方を述べます。


実は、私はいつも、暗算でやっています。
(暗算が不得意な私でさえ、です。)


角度θをラジアンの単位で表せば、
θが小さいとき
tanθ ≒ θ
という近似が成り立ちます。
勾配が5%でも、かなり急な坂ですので、一般の道路については、θは十分小さいと考えることができます。

%で表される勾配をgと置くと、

tan(g/100) ≒ g/100 ≒ θ (単位はラジアン)

度に変換すればよいので、
g/100 ÷ π × 180 ≒ 0.57

つまり、パーセントの数に0.57をかければ、角度になります。
3.2% → 3.2×0.57=1.82 → 約1.82度

冒頭で述べた私の「暗算」というのは、
何のことはない、単に、
「0.6をかける」
ということなのでした。

3.2% → だいたい3 → 3×0.6 → だいたい1.8度


というわけで、
関数電卓やGoogle電卓をお使いになる際、
打ち間違いで大幅に答えを間違えることのないよう、
「0.6をかけたのと大体同じ」
ということを覚えておくことをおすすめします。

こんばんは。

関数電卓の使い方については、すでに回答がありますので、
知っておくと便利な考え方を述べます。


実は、私はいつも、暗算でやっています。
(暗算が不得意な私でさえ、です。)


角度θをラジアンの単位で表せば、
θが小さいとき
tanθ ≒ θ
という近似が成り立ちます。
勾配が5%でも、かなり急な坂ですので、一般の道路については、θは十分小さいと考えることができます。

%で表される勾配をgと置くと、

tan(g/100) ≒ g/100 ≒ θ (単位はラジアン)

...続きを読む

Q材料力学(数学)の問題です。 0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-a

材料力学(数学)の問題です。

0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-ax+3abである関数のグラフを描け。a、bは正の定数とする。
この問題の解き方を教えて下さい。わかりやすく解説してくだされば有難いです。

Aベストアンサー

0<x<bでy=ax
これは単なる比例です。aが正の定数なので、0を通る右上がりの直線ですね。

b<x<2bでy=ab
a,bが定数なので、abも定数です。
x=bの時「y=ax」=「y=ab」であるので、
y=axのx=bにおけるyから横一直線ですね。

2b<x<3bでy=-ax+3ab
これは最初の比例のグラフと傾きが正負逆になっていますね。
x=2bの時y=-2ab+3ab=ab、
x=3bの時y=-3ab+3ab=0
となる右下がりの直線ですね。

x=0,b,2b,3bは範囲外となります。
グラフを描く時に境界部分で○とするか●とするか間違わないように。

Qカメラの28mmとは、角度で言うと何度なのでしょう?

カメラ、デジカメでは、広角を言うのに「28mm!」などとミリで謳います。
webカメラでは、「100°!」などと角度で謳います。

「ミリ」と「角度」を換算する計算式などあれば知りたいです。

よろしくおねがいしますー

Aベストアンサー

#1です。

>webで、入力すると、導き出してくれるようなところがあればいいんですけどねー。

ないことはないのですが。
http://chatvert.web.fc2.com/zavod/culc/cul_df.html

ページの(対角線)画角に75.38(度の窓に)を入力して処理ボタンをクリックすると、焦点距離が表示され、28になります。

反対の処理はできないようですから、例えば、画角の方を変えて、35mmになるまでやるしかないですが。


人気Q&Aランキング

おすすめ情報