スマホに会話を聞かれているな!?と思ったことありますか?

テイラー展開で
~近傍のテイラー展開の値を求めよ。
とかありますよね?
ここで近傍とはいかにも抽象的だと思うんです。
どの程度までを近傍と言うのでしょうか?
またまた例えば1近傍と2近傍でテイラー展開する
意味はなんなんでしょうか?
なにか実用例がありませんか?
(1近傍でないとテイラー展開しても意味ない場合とか。)
お願いします。

A 回答 (3件)

> テイラー展開の値を求めよ。


という言い方はしません.
「テイラー展開を求めよ。」とは言いますが.

> またまた例えば1近傍と2近傍でテイラー展開する
> 意味はなんなんでしょうか?

1近傍でテイラー展開なら x-1 のべき級数にするのだし,
2近傍なら x-2 のべき級数にするわけです.

1/(1+x) を例にしましょう.
0近傍でテーラー展開なら
(1)  1/(1+x) = 1 - x + x^2 - x^3 + ...
これは無限等比級数の和を逆に書いたもの( -1<x<1 でないと意味がない).

1近傍でテーラー展開なら,x-1=y とおくと見やすくて
(2)  1/(1+x) = 1/(2+y) = (1/2) {1/(1+z)}    (z=y/2 とした)
    = (1/2){1 - z + z^2 -z^3 + ...}
    = (1/2) - (1/4)(x-1) + (1/8)(x-1)^2 - (1/16)(x-1)^3 + ...
2近傍なら,同様のやりかたで
(3)  1/(1+x) = (1/3) - (1/9)(x-2) + (1/27)(x-2)^2 - (1/81)(x-2)^3 + ...

> どの程度までを近傍と言うのでしょうか?
近傍というのは,上のような意味ですからどの程度までというのは意味がありません.
ただし,テイラー展開には収束半径がありまして,
展開の中心の値から余り離れると収束しなくなることがあります.
上の 1/(1+x) の0近傍の場合ですと,収束半径は1といいます.

> 1近傍でないとテイラー展開しても意味ない場合とか。
x=1 付近の関数の性質を調べるのでしたら1近傍で展開しないと役に立ちませんが,
そういうこととでしょうか?
あるいは,上の 1/(1+x) ですと x=-1 近傍ではテーラー展開できませんが
(x=-1 とおくと困ってしまう),
そういうことですか?

最後に,テーラー展開を形式的に作れてもそれが収束するとは限りませんし(上の例),
収束しても元の関数を表さない場合もあります.
後者の例は exp[-1/x^2] など.

この回答への補足

>x=1 付近の関数の性質を調べるのでしたら1近傍で展開しないと役に立ちません >がそういうこととでしょうか?

ここでも付近という言葉が使われてますが"x=1での"となぜ言わないのかが疑問なんです。
付近と言われると1.03とかの値も含むのか?と思ってしまうわけです。
x=1.03でのテイラー展開の値を調べたいならx-1.03にすればいいだけで
"付近"と付ける必要などないのではないでしょうか。
こういう曖昧な表現をする必要性がわからないんです。
それとも"x=1.03でのテイラー展開"とかいうのはできないんですか?

それとテイラー展開すると性質がわかるとおっしゃってますが
どのような性質がわかるのでしょうか?
単に関数の値が変わるだけかな?と思ってしまいます。
(ってこれでも十分問題ですけど性質と言われるとなにかあるように思えてしまう)
先の例みたいに1近傍と2近傍ではこういう違いがあるみたいに書いてもらえると
わかり易いです

補足日時:2002/05/06 23:00
    • good
    • 0

その程度近傍かと言うと、誤差を無視できるくらい近傍です。


テーラー展開すると、ほとんどすべての関数が、計算しやすくなります。
近似だけど、誤差がとても小さくて、それが嬉しいのです。

x=1.03の近傍で展開してそのあとどうするのですか?
その展開式にx=1.03を代入してみるのですか?
御自分で身を持って体験するといいと思うのですが、かなり残酷な結果ですよ。

最後に、「1近傍と2近傍でテイラー展開する意味はなんなんでしょうか? 」の回答ですが、おそらく、今後に備えての練習問題でしょう。
経済学や工学などでテーラー展開する時に備えての練習だと思います。
「1近傍と2近傍でテイラー展開する」実用的な意味があったとしても、あなたがその関数を具体的に挙げてくれないと、説明できません。
(変数変換すればxがどんな値であるかは無意味になってしまいます。)

なんか冷たい言い方でごめんなさい。
    • good
    • 0
この回答へのお礼

確かにテイラー展開すると計算がしやすくなりますね。
テイラー展開が今まで使われた例が全てと言っていいくらい
0近傍でのテイラー展開で2次以降は無視という形で計算していましたので
例を挙げるのはちょっと難しいです。
x=1.03というのは近傍という意味を勘違いしていたからの発言です。
どうか気にしないでください。
ありがとうございました。

お礼日時:2002/05/07 23:07

siegmund です.



No.1 でも書きましたが
> x=1.03でのテイラー展開の値を調べたいなら
のテーラー展開の《値》というのは意味がありません.
関数の値のつもりですか?
そこら辺に根本的誤解がないでしょうか?

たった1点での関数の値が分かっても,関数の振る舞いの様子はわかりません.
x=1 だけみれば x も sin(πx/2) も同じです.
これが
"x=1での"となぜ言わないのか,の答です.

関数の振る舞いを知るためには x を動かしてみないといけません.
そのために,「近傍」とか「付近」とかいうのです.
(たとえば) x=1 から少し x が動いたときの様子をべき展開で見るのが
テーラー展開です.

> テイラー展開すると性質がわかるとおっしゃってますが
例えば,(x-1) の項を見れば増加関数かどうかわかりますし,
(x-1)^2 の項を見るとグラフが上に凸か下に凸かがわかります.

> "x=1.03でのテイラー展開"とかいうのはできないんですか?
x=1.03 だろうが x=π だろうが関係ありません.
    • good
    • 0
この回答へのお礼

やっと真相がつかめてきました。
私もx=1ならxに1を入れてしまえばいいことで
テイラー展開する意味がないのに。と思っていたんです。
近傍や付近の意味もわかりました。
どうもありがとうございました。

お礼日時:2002/05/07 23:02

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


おすすめ情報