教えて!gooにおける不適切な投稿への対応について

逆写像について質問です。
教科書で定義を見てもいまいち理解できません。
具体的な例を挙げます。

いま、A={a,b,c,d,e}とし、AからAへの写像fを
f={(a,c),(b,a),(c,d),(d,b),(e,e)}
とするとf^(-1)の値はどうなるか?

自分が考えたのは、単にそのまま逆にして
f^(-1)={(a,b),(b,d),(c,a),(d,c),(e,e)}
となるのではないかと思ったのですが、これで合っていますでしょうか?
逆写像の考え方等どなたか詳しい方は教えてください。
よろしくお願いします。

gooドクター

A 回答 (2件)

定義は


写像f:X→Yの逆写像f(-1):Y→Xとは、y∈Yに対してf(x)=yとなるx∈X
を対応させる規則のことですね。

これはfが全単射でなくてはちゃんと定義できません。

たとえば
f:{a,b,c}→{a,b,c}

f(a)=a
f(b)=a
f(c)=b
などと定義すると、
f(-1)(a)はaとbの2つ
f(-1)(b)=c
f(-1)(c)はない
などとなって、f(-1)が定義できません。
これは、fが単射でも全射でもないからです。

また、
f:{a,b,c}→{a,b,c,d}

f(a)=a
f(b)=b
f(c)=c
と定義すると、
f(-1)(a)=a
f(-1)(b)=b
f(-1)(c)=c
f(-1)(d)はない
となって、f(-1)は定義できません。
これは、fが単射ではあるが、全射ではないからです。

しかし、単射ではあるが、全射ではない写像f:X→Yに関して、
f(-1)の定義域をf(X)に限定すれば逆写像がちゃんと定義できます。

また、f(-1)の逆写像はもとのfになります。

集合XとYの間に全単射f:X→Yが定義できるときにXとYは対等といって、
X~Yなどと書きます。XとYが有限集合なら、XとYの要素の個数が等しいときのみ可能です。

XとYが無限集合でも、たとえば、
X:自然数全体の集合、Y:偶数全体の集合
として、f(n)=2nと定義すると、fは全単射で、X~Yであり、
f(-1)(2n)=nで逆写像はちゃんと定義できます。
すなわち、XもYも無限の度合いが同じということです。

また、X:自然数全体の集合、Y:有理数全体の集合
としても全単射f:X→Yがちゃんと定義でき、X~Yです。
すなわち、有理数全体の集合は1、2、3、・・・と番号付けを
することができます。
(これは最初は不思議で、ちょっと難しいですが、数学者カントール
の考えた方法で、本当です。)

しかし、X:自然数全体の集合、Y:実数全体の集合とすると、
全単射f:X→Yは定義できないので、X~Yではありません。
すなわち、実数全体の集合は無限の度合いが自然数全体の集合より
高いということで、1、2、3、・・・と番号を付けてすべてを数
え上げることはできません。

逆写像を考えるときは、定義域、値域をしっかり念頭に置くことが
肝心です。

どのレベルの方かわからないので、いろいろ書いてしまいました。
(ほとんど集合の教科書に書いてあると思いますが。)
    • good
    • 0
この回答へのお礼

ご丁寧な説明ありがとうございます。
カントールの考え方は授業の中で聞いた気がします。
運動会の玉入れ競技で玉の数を数えるときと同じだとかなんとか・・・。
でもやっぱりまだ僕にとっては少し難しいです。色々考えてみます。
どうもありがとうございました。

お礼日時:2007/01/26 19:09

それで合っています。

ese_prograさんは逆写像を正しく理解しています。もう少し自信を持っても良いのではないでしょうか?
    • good
    • 0
この回答へのお礼

ありがとうございます。
どうもあまり得意でなく自信が持てないみたいです。
できればなにか説明をしてくださるとありがたいのですが・・・。

お礼日時:2007/01/23 21:55

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

gooドクター

人気Q&Aランキング