痔になりやすい生活習慣とは?

ある本(*)で
蛍光分析の分光分析に対する長所が
以下のように述べられています。

「吸光分析では、リングボムエラーによる制限で、線形性を保つ領域が限定される。・・(中略)・・。しかし、蛍光分析は、幅広い範囲でエラーが一定である。・・・・」

前半の、リングボムエラーの部分は理解できるのですが、後半の、蛍光分析では幅広い範囲でエラーが一定というところがわかりません。
私の考えでは、以下のように、蛍光強度測定でも、リングボムエラー同様の誤差が生じてしまうと思えてならないのですが・・

 F=I*φ(1-exp(cεd))
  (F:蛍光強度、I:励起光強度、φ:発光効率、c:蛍光体濃度、ε:吸光係数、d:セル長)
  ⇒ΔC/C=-1/(εdIφ)*1/{(1-F/Iφ)log(1-F/Iφ)}

どなたか、おわかりの方がいらっしゃいましたら教えてください。
関連するWebページ・書籍などがありましたら教えてください。
お手数ですが、よろしくお願いいたします。

* Guilbault, G.G. (ed.) 1990
Practical Fluorescence 2nd, Marcel Dekker, New York, p.26

このQ&Aに関連する最新のQ&A

A 回答 (3件)

> 線形性(C∝F)からの逸脱のことかもしれません。



 多分そうでしょうね。

「光度計の作りからしても、セルの奥行き方向に一様でない蛍光発光強度分布があるのは大変不都合です。」

 蛍光側の分光器が覗いている位置において一様でない強度分布があって、その相対分布
が濃度で変わると、直線性に影響するのではないかと思います。

> 低光量域でない場合のフォトマルのノイズがどんなものであるか

 狭い意味でノイズとしては、ノイズ光量に関わらず基本はショットノイズですね。
正確にはノイズとは違うのですが、光量が大きくなると出力の直線性が悪くなってきて
最後は飽和に達します。

【1】吸光分析では蛍光分析と違って吸収ピーク波長の1波長だけでの分光測定は普通やりません。

 私は分析化学屋ではないので詳しくないのですが、逆に吸収ピークの1波長だけで
定量することの方が少ないのでは? (夾雑物の影響などを除けないからか)

【2】そのため、いかに吸収ピーク波長での光量が少なくてもホトマルの印可電圧をあまり上げることはできません

 上記ベースライン波長と吸収ピーク波長は同じ印加電圧で測定するのが望ましいから
です。

【3】(ダブルビーム方式ではなおさら)

 試料側は試料による吸収で光量が大きく減衰していても、参照側はブランク溶液で
基本的に吸収はありません。なので、その波長で試料側に合わせてホトマルの印加電圧
を上げると参照側は飽和してしまいます。
    • good
    • 0
この回答へのお礼

何度も丁寧にご回答くださりありがとうございました!感謝の言葉もございません。本当にありがとうございました。

お礼日時:2007/03/05 23:41

> ΔF=一定だとすると、濃度が小さくなるほど(Fが小さくなるほど)誤差は大きくなるわけです。



ΔF=一定にはなりませんね。(正しく設計・製造・調整された装置で)ホトマルの印可電圧
さえ適正なら、低光量域のノイズはほぼショットノイズで決まりますから、ΔF∝√Fで、
ΔF/Fは一定ではないものの、かなりFが小さくなるまでがんばってくれます。

> 今度は吸光分析の方で出力光が小さくなり、いくらでも高感度の測定ができるように思えてしまいます。

残念ながら実際にはそうはいきません。吸光分析では蛍光分析と違って吸収ピーク
波長の1波長だけでの分光測定は普通やりません。基本的に吸収のないベース波長
も使って2波長or3波長で測定します。そのため、いかに吸収ピーク波長での光量が
少なくてもホトマルの印可電圧をあまり上げることはできません(ダブルビーム方式
ではなおさら)。そして吸光分析の場合には、一般に分光光度計の迷光が直線域の
上限を規定します。例えば10^-4(10のマイナス6乗のつもり=0.01%T)の迷光があった
とすると、4Absで直線から外れてしまいます。

> では逆に、濃度が濃い場合というのは、一体どうなるのでしょうか?

ご指摘の書籍を見ていないので何とも言えませんが、高濃度域の蛍光分析が有利で
あるとは、どう考えても腑に落ちないです。Lambert-Beerの法則を直線近似できない
領域と言うことは、すなわちセルの中で励起光の進行方向に励起光強度が(吸収され
ていって)どんどん下がっていくことを意味します。通常、分光蛍光光度計はそのセル
を直交方向から蛍光発光測定します。光度計の作りからしても、セルの奥行き方向に
一様でない蛍光発光強度分布があるのは大変不都合です。
しかも、先の回答で書いたローダミンB溶液のような濃度領域に近づいたケースを
考えれば、明らかに濃度値で見た場合のS/Nはあるところでダメになるのは目に見え
ていると思いますが...

この回答への補足

迷光のことは全く考えていませんでした。
0.01%Tでも4ABSだということはかなり測定範囲が制限されていますね。
逆に低濃度の蛍光分析の場合は、この程度の迷光がきても、C∝Fなので、C~0.01%まで測定できるということなのですね。なるほどスッキリしました。


さて、高濃度の蛍光分析についてですが、私が混同していた部分がありました。測定誤差というのが、測定値の再現性とばかり思っていたのですが、
線形性(C∝F)からの逸脱のことかもしれません。濃度測定だと後者のほうが自然のように思えます。そうだとしても、わからないままですが・・・・


測定の再現性という点での話ですが、
ご回答で、
「光度計の作りからしても、セルの奥行き方向に一様でない蛍光発光強度分布があるのは大変不都合です。」
とありますが、これはどうしてなのでしょうか?蛍光の再吸収などではなく、装置関係の問題でしたら、是非教えてください。
また、ΔFもある程度知っておきたいので、低光量域でない場合のフォトマルのノイズがどんなものであるか簡単に教えてください。


そして、さらに横道にそれるのですが!!
もしよろしかったら御回答の中の以下の3点について教えてください。
あまりにずうずうしいので、これで終わりにいたしますので、なにとぞ宜しくお願いいたします。

【1】吸光分析では蛍光分析と違って吸収ピーク波長の1波長だけでの分光測定は普通やりません。
   吸光分光にも用途が色々あると想像します。
   2・3波長で測定する必要があるのはどんな場合なのですか?
   スペクトルをとるということではないのですよね?

【2】そのため、いかに吸収ピーク波長での光量が少なくてもホトマルの印可電圧をあまり上げることはできません
   これは、スペクトルを取る時に一気に波長をスキャンするので、
   印加電圧を変える時間がないというようなイメージでしょうか?

【3】(ダブルビーム方式ではなおさら)
   これはどうしてですか?全く分かりません。

基本的なことを随分理解していないような気がしてきました(;;)

以上

補足日時:2007/03/05 12:36
    • good
    • 1
この回答へのお礼

遅くなり申し訳ありませんでした。さすがは専門家ですね!丁寧で、わかりやすく、貴重な御回答ありがとうございました。大変勉強になりました。

お礼日時:2007/03/05 10:08

一応、装置を作る側の元プロです。

分析化学を専門とする者ではない(化学屋では
なく物理屋!)ので、とんちんかんな回答かも知れませんが。

"蛍光光度法"でも、質問者さんが「同様の誤差が生じてしまうと思えてならない」と
言っておられるように、励起光の吸収過程においては"吸光光度法"と同様の話になり
ます。しかし、"吸光光度法"で扱う試料の吸収量(i.e.試料濃度×吸収係数)の範囲と、
"蛍光光度法"で扱う試料の吸収量(同)の範囲は大きく違うのではないでしょうか?
(蛍光分析の方がはるかに高感度で、試料の吸収量としては非常に小さいはず)
つまり、"吸光光度法"で扱う吸収現象はLambert-Beerの法則通り、測光値が濃度に
対して指数関数で規定される訳で、生の測光値(Absではなく%T)の対数を取って
Abs(吸光度)にして検量線を作りますよね。これに対し、"蛍光光度法"で扱う吸収現象
はもっとずっと小さな値の領域で、x<<1 につき 1-exp(-x)≒x で近似される領域では
ないですか? そうすると、最終的な蛍光発光強度は「試料濃度に直に正比例」する
直線領域となり、濃度vs測光値(蛍光強度)でリニアな検量線が引けます。
このことは、"蛍光光度法"でも濃度が過大になると非線形になることで分かります。
更に濃度が大きくなると、励起光はセル中(極端な場合にはセルから中に入ったごく
表層部分のみ)で全て吸収され尽くしてしまい、それ以上蛍光強度は増えません。
例えば、分光蛍光光度計の装置校正に使う高濃度ローダミンB溶液などはこの状態
で使用します。

生の測光値と試料濃度の関係が素直なので、迷光や装置の縦軸分解能・再現性など
の影響も素直で「検量線の直線範囲が広い」ということにつながるのではないで
しょうか?

この回答への補足

分からなかったのは、
「濃度が濃い場合でも蛍光分析のほうが、吸光分析より測定誤差が小さい」のは何故?
ということでした。(本の該当部分に表示されている誤差グラフではそうなっているのです・・・)

濃度が薄い場合、回答者様のご指摘のとおり、近似的に濃度と蛍光強度が比例します。しかし、そのときでも、Lambert-Beerの法則の法則は成立していて、ただ、単に、対数を毎回計算しなくてもいいから便利だという話ですよね。実際、濃度が薄い場合に、以下のように近似しても

  F=I*φ(1-exp(cεd))≒I*φcεd

リングボムエラーと同様の誤差(ΔC/C=ΔF/F)は存在して、ΔF=一定だとすると、濃度が小さくなるほど(Fが小さくなるほど)誤差は大きくなるわけです。ところが、実際、蛍光強度が小さくなると、光電子増倍管の感度を上げさえすれば、ΔFはかなり小さくなり、おかげで、濃度が数桁小さくても、ΔF/F(=ΔC/C)が小さいままで測定できるということはわかりました。

では逆に、濃度が濃い場合というのは、一体どうなるのでしょうか?
同じように考えると、今度は吸光分析の方で出力光が小さくなり、いくらでも高感度の測定ができるように思えてしまいます。
そもそも濃度が濃い場合は、Lambert-Beerの法則が成立しないので、このような議論は成り立たないということかもしれませんが、だとすると、一体どうかんがえればよいか見当もつきません。

長々と失礼しました。

補足日時:2007/02/28 20:12
    • good
    • 0
この回答へのお礼

非常に丁寧なご回答ありがとうございました。知らなかったことが沢山あり、大変ためになりました。また、おかげさまで、何が分からなかったのかがクリアになりました。

お礼日時:2007/02/28 20:11

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Q発光強度の単位は

分光計測器で分光分布の波形を得ました。グラフの横軸は波長で、
単位は[nm]なんですが、縦軸の発光強度の単位が解らないので質
問しました。よろしくお願いします。

Aベストアンサー

一般的に単位はありません。
吸光、蛍光、フォトン数など濃度に対する相対強度
ですので表示するのであれば、強度(intensity)でしょう。

QLambert-beer則 高濃度領域での誤差

 Lambert-beerの法則を用いて、吸光係数を求める実験をしました。実験はうまくいったのですが、濃度と吸光度の関係のグラフが試料溶液が高濃度の領域では直線にならず、曲がります(吸光度が低くなります)。一般的にこのようになるようですが、なぜなのでしょうか?理由、理論のわかる方、教えて頂けないでしょうか☆

Aベストアンサー

分光光度計は、試料が高濃度の場合の吸光度を正しく測定できないのだと思います。
(Absが2.000とか、それ以上になると正しく測定しない場合が多い(?))

Q量子収率とは???

量子収率という言葉はよく聞くのですが、いまいちよく分かりません。

どなたか分かりやすくご説明して頂けないでしょうか?

お願いします。

Aベストアンサー

量子収量の定義は「光化学反応において、吸収した光子に対する生成物の割合」です。例えば、反応物に光を照射し、そのうち1molの光子を吸収して0.5molの生成物を得た場合、量子収率は50%ということになります。光子のmol数は光強度、振動数、照射時間、プランク定数、アボガドロ数から計算されます。

Q吸光度?蛍光強度?励起強度?

いま研究で蛍光測定の実験を行おうと思っているんですが、
吸光度と励起強度と蛍光強度
が頭の中でごちゃ混ぜになってしまい、いまいち理解できません。
どうか、分かりやすい説明できる方がいらしたらぜひお願いいたします。

Aベストアンサー

No.1です。補足しますと、
・測定対象に当てる光(多分、紫外線)の強さが励起強度
・測定対象に当てた光の強さと反射(あるいは透過)して戻ってきた光の強さの差分(つまり測定対象に吸収された光の強さ)を、当てた光の強さで割ったものが吸光度
・測定対象に光を当てたことにより発した蛍光の強さが蛍光強度

Q蛍光スペクトル

蛍光スペクトルと励起スペクトルについて教えてください

励起光の波長を変化させて蛍光の波長を固定して測定したものが励起スペクトルで、励起光を固定して蛍光の波長を測定したものが蛍光スペクトルだというのはわかるのですが、2つがどういうものかということがよくわかりません。

教科書のスペクトルと見ると、横軸は波数で蛍光の波長だと、わかるのですが、励起光の波長はどこに表されているのでしょうか?

またどうして励起スペクトルと蛍光スペクトルが鏡像関係にあるのかもわかりません。

あまり難しい言葉や数式は使わずわかりやすく回答してもらえれば幸いです。

Aベストアンサー

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギーの低い状態へ移動する)を経て励起状態振動基底状態へ移動します。そして、図では緑の矢印で示されている蛍光が発光します。

質問者様のおっしゃる励起スペクトルはこの青色の矢印の波長を変えながら緑色の矢印すべてひっくるめた蛍光全体の強度を測ります。このとき、電子励起状態の振動基底状態や振動励起状態(図では太い横線が各電子状態の振動基底状態を示し、その上の細い横線がその電子状態の振動励起状態を示しています。)へ励起されますので、励起光の波長は電子励起状態の各振動状態のエネルギーに対応したものとなります。溶液などでは、振動励起状態へ励起してもすぐにその電子状態の振動基底状態へ緩和されますので、緑の矢印全体の強度というのは、励起された分子の数に比例します。つまり、励起スペクトルは分子の吸収スペクトルに比例したようなスペクトルが得られるわけです。(もちろん、いろいろ例外はありますが)

さて一方、質問者様のおっしゃる蛍光スペクトルは緑色の矢印をさらに分光器などで分散させて矢印一本一本を別々の波長として観測するスペクトルです。つまり、波長は電子励起状態の振動基底状態から電子基底状態の振動励起状態のエネルギーに対応したものとなります。

蛍光スペクトルにおいて、励起光の波長がわからないと言うことですが、溶液などでは励起分子はすぐに電子励起振動基底状態へ緩和しますので、励起光の波長を変えて励起する分子の振動状態を変えても、蛍光スペクトルはすべて電子励起振動基底状態からのもので、波長とその強度比は変わりません(励起スペクトルのように全体の強度はかわりますが)。このような場合、励起光の波長を書かないことが多いです。

図でもわかるように、励起光の波長と蛍光発光の波長はは電子励起振動基底状態のエネルギーをはさんで、励起光は電子励起状態の振動エネルギーだけ高いエネルギー(短い波長)になり蛍光は電子基底状態の振動エネルギーだけ引いエネルギー(長い波長)になり、それぞれの振動エネルギー構造が似ていれば、鏡像のような形になることがわかります。

以上、「励起光が書いていない」ということから類推して、すべて溶液の蛍光測定と仮定してお答えしました。気体や分子線を使ったLIFではちょっと話がかわってきますので、その点はご留意ください。

参考URL:http://www.jp.jobinyvon.horiba.com/product_j/spex/principle/index.htm#01

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギ...続きを読む

Q励起スペクトル測定の意義

今、実験で蛍光と燐光について学習しているのですが励起スペクトルを測定する意義がいまいち理解出来ずにいます。

例えば、吸収スペクトルにおいて250、260、270nmに吸収ピークが存在し、これらの励起波長で被験物質を励起したところ600nmに発光スペクトルが観測されたと仮定します。

ここで、おそらく被験物質に対して600nmの光を照射し、励起スペクトルの動向を調べるのではないのかな?と漠然と思うのですが、実際のところどうなのでしょうか?
また、励起スペクトルはどのようなピークを示すのでしょうか?

Aベストアンサー

> 600nmの光を照射し、励起スペクトルの動向を調べるのではないのかな?

ではなくて,600 nm の発光を検出しつつ,励起光の波長を変えるのが励起スペクトル.
単純に吸収したエネルギーがそのまま発光に回るなら,吸収スペクトルと一致するようなスペクトルになりそうですが,励起準位によっては吸収したからといって,それがそのまま発光に回るとは限らないわけです.どの吸収がその発光に効くのか,吸収スペクトルとかと比較すると発光機構等のてがかりになることもある,と.

Qヤーンテラー効果について

ヤーンテラー効果について勉強したのですがよく分かりません。もし分かりやすく説明してくれる方がいればよろしくお願いします。

Aベストアンサー

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四面体配位は例が少ないので省略します).例えば,Fe錯体なんかはたいてい八面体配位(配位子が6個)って教わりましたね.しかし,Cu錯体やPt錯体などはなぜか正方形の配位をとります.本来であれば,八面体配位をとったほうがよさそうな感じがしますよね.だって,FeとCuって電子が3つしか違わないから.

ここで,Jahn-Teller効果にもとづく正方晶ひずみという効果が生じてきます.これって何かというと,z軸方向の配位距離(金属と配位子との距離)が伸び,xy方向の配位距離が縮まるのです.つまり,八面体を横からグシャッとつぶして縦にビヨーンと引っ張った感じになります.

このような傾向は,d軌道の電子が多いほど起こりやすくなります.
こうやって,もしもz軸方向の配位距離が無限に伸びてしまったら?そう,z軸方向の配位子はどっかに飛んでいってしまい,結果として正方形状に並んだ4つの配位子だけが残ります.

つまり,「Cu錯体が正方形配位であるのは,八面体がひずんでz軸方向の配位子がなくなったからである」といえましょう.


しかし,「なんでd軌道の電子が増えるとz軸方向に伸びるの?」と思われますよね.これは電子軌道理論で説明できます.
八面体のときは,d軌道は3:2に分裂してますよね.低エネルギーで縮退している3軌道はdxy,dyz,dzxで,高エネルギーのそれはd(xx-yy),dzzです.さて,d軌道の電子が増えると,実は二重および三重に縮退していた軌道が分裂して,2:1:1:1とこま切れになってしまいます.具体的には,z因子を含む軌道(dyz,dzx,dzz)の3つのエネルギーが低下します.(なんでそうなるのかについてはムズカシイので省略させてください)


う~ん,なにやらムズカシイお話になってしまいましたね.
でも,「d軌道の縮退が変化する=配位の形も変化する」ということはなんとなく予想できますよね.これを理論的に説明したのがJahn-Teller効果です.


こんな稚拙な説明でわかっていただけたでしょうか.
もし,「この文章のここがよくわからない」などがありましたら,補足をお願いいたします.また,これ以上の内容についてはShriver(シュライバー)著『無機化学』p.354あたりに書いてあるので,そちらをご覧ください.

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四...続きを読む

Q分光光度計と蛍光分光光度計

「蛍光」の方で、励起光で、励起状態にした後の蛍光強度の測定というのは、分光光度計で同じ波長のODを測るのと同じ理屈でしょうか?
質問が、的を得ないですみません。
例えば、ある蛍光試薬の、蛍光波長が547nmだとして、励起
後の蛍光強度は、分光光度計で測定したODと同じはずなんでしょうか?
質問の内容が不明な部分は、補足いただくと助かります。
どうぞよろしくお願いします。

Aベストアンサー

原理は知らなくても、使えれば良い、と思っていますので。その立場から回答します。ご質問の意図とズレテいればご容赦を

>「蛍光」の方で、励起光で、励起状態にした後の蛍光強度の測定というのは、分光光度計で同じ波長のODを測るのと同じ理屈でしょうか?
 全く違います。原理から言えば、分光光度計は吸光分析、蛍光は発光分析です。

 分光光度計のセルは、二面だけが透明です。一方から入ってきた光を基準としてに、セルの中でどれだけ吸収されたか、それをセルから出てきた光の量との比で表します。比ですから、特定波長(普通は、極大吸収波長)では、どの分光光度計で測定しようと同じになります(pHなどの些細な条件を無視すれば)。また、誰が測ろうと同じ値になるハズなので、1モルの濃度の吸光度は、モル吸光係数として表すことができます。吸光度は、絶対的な値と考えることができます。
 蛍光の場合は、4面透明のセルですね。30年も前に、「1個1万円(私の1ヶ月の生活費)」と聞いてビビッタことがあります。これは、一方から入ってきた光がセル内の蛍光物質に当たり、そこで蛍光を発します。これを入ってきた光が妨害しない90度の角度から測定します(ですから4面透明)。したがって、入ってくる光が強ければ強いほど、蛍光波長での値は大きくなります。すなわち、使う機械、温度などによって大きく左右されます。また、機械的に感度をあげて見かけ上の値を大きくすることも可能です。すなわち、相対的な値なのです。そこで、標準物質をもちいて、その相対的な値として表します。

 溶液Aがある場合、吸光度は、どこで、どの機械で、誰が測ろうとも同じ値になります。モル吸光係数さえ分かれば、検量線を描かなくても、計算できます。
 蛍光強度では、同じひとが同じ機械で測ろうと、同じ値には必ずしもなりません。ですから、毎回標準物質を用い、その相対的な値として表します。

 なお、蛍光強度は、吸光どの1000倍程度の感度がある、と言われています。蛍光を用いるのは、感度が良いので、微量でも測れるからです。
 

原理は知らなくても、使えれば良い、と思っていますので。その立場から回答します。ご質問の意図とズレテいればご容赦を

>「蛍光」の方で、励起光で、励起状態にした後の蛍光強度の測定というのは、分光光度計で同じ波長のODを測るのと同じ理屈でしょうか?
 全く違います。原理から言えば、分光光度計は吸光分析、蛍光は発光分析です。

 分光光度計のセルは、二面だけが透明です。一方から入ってきた光を基準としてに、セルの中でどれだけ吸収されたか、それをセルから出てきた光の量との比で表します。...続きを読む

Q形質転換効率?の求め方

プラスミドの導入による細菌の形質転換のレポート作成中です。
形質転換効率(cfu/μg)求める式、どなたか教えていただけませんでしょうか??
また、プラスミドによる薬剤耐性化が問題となっている細菌感染症の例には、どのようなものがありますか??レポの提出日、明日なので、誰か助けてください><よろしくおねがいしますmm

Aベストアンサー

形質転換効率の意味を理解していれば、単純な割り算、掛け算です。特に公式のようなものはありません。
パラメータは
A. コロニーの数(プレーティングするを振っていたなら、数十から数百コロニーまいたプレートを採用します。少なすぎるとサンプリングによる振れが大きくなりますし、数えるのが不正確になります。同じ量をまいたプレートが複数ある場合は平均します)。

B. Aを与えたプレーティング細胞の体積
C. プレーティング細胞全体の体積(回復培養のため加えたSOC培地の体積でよろしい)
D. 使用したプラスミドベクターの重量(ライゲーション産物の場合はベクターの重量のみで、インサートは勘定にいれない)

計算例)
A=150 cfu, B=100 uL, C=1000 uL, D=1 ngとしましょう。

まいた100 uL中に含まれるプラスミド量は
1 ng x 100 uL/1000 uL=0.1 ng

そのプラスミド量で150個のコロニーが出たので、1 ugあたりに換算すると

150 cfu x 1 ug/0.1 ng= 150 cfu x 1 ug/0.0001 ug=1.5x10^6 cfu/ug

となります。単位につくmicro (uであらわしています), nano (n), pico (p)が順に1/1000ずつ小さいことをあらわすのは説明不用ですね。

薬剤耐性化の設問は、日常生活とのかかわりを問うているもので、専門知識よりむしろ新聞の社会欄に出てるような話題を求めているのではないですか。たとえば、院内感染で騒がれているのはどのような感染症でしょう。

形質転換効率の意味を理解していれば、単純な割り算、掛け算です。特に公式のようなものはありません。
パラメータは
A. コロニーの数(プレーティングするを振っていたなら、数十から数百コロニーまいたプレートを採用します。少なすぎるとサンプリングによる振れが大きくなりますし、数えるのが不正確になります。同じ量をまいたプレートが複数ある場合は平均します)。

B. Aを与えたプレーティング細胞の体積
C. プレーティング細胞全体の体積(回復培養のため加えたSOC培地の体積でよろしい)
D. 使用...続きを読む


人気Q&Aランキング