親子におすすめの新型プラネタリウムとは?

ダイヤモンド格子の充填率がいくらやっても、求められません。答えは34%くらいと載っているのですが、求め方が分かりません。計算で求める方法を分かる方、解説しているサイトなどあったら教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (6件)

shinn418さんこんばんは。



早速ですが、体心立方格子や面心立方格子などの充填率はどのように求められるのかは知っていますか?私が持っている高校生で使われている資料集を見たところ書いていないようなのでヒントを含めて書いていきます。できたらshinn418さん自身が書店に行ったり図書館に行ったりして「結晶化学」の本を探して確認して下さいね。

まず充填率とは簡単にいうと「格子内にどのくらいの原子が含まれているのか」を表した「割合」ですよね。

そこで、原子は真球であるとすると、球の体積を求める公式が浮かんできます。すなわち、

4/3πr^3    …(1)

です(乗数を表すのに「^」を用いました)。次に、ダイヤモンド格子は立方体なので、一辺の長さをaとすると、格子の体積は

a^3      …(2)

そしてダイヤモンド格子を構成している炭素は12個なので、求める充填率は(1)(2)より

{(4/3πr^3)×12}×100÷a^3

となるわけです。ちなみにrは原子半径なので、この求め方はshinn418さん自身で導きましょう。
    • good
    • 1
この回答へのお礼

大変分かりやすく教えて頂き有難うございます。
恐らく、ダイヤモンド格子を構成している炭素は8個ではないでしょうか?それと、

r=√3/4×a

と計算しました。すると、充填率がどうしても100%を超えてしまうのですが…。

お礼日時:2007/04/22 12:59

分かられたかどうかが分かりませんので念のために書かせて頂きます。



質問者様が書かれている
r/a=√3/4は正四面体1つを含む立方体の一辺の長さと原子半径の関係ですね。
ダイヤモンドの単位格子には立方体が8個含まれています。そのうちの4つが正四面体を含んでいます。単位格子の一辺の長さは正四面体の立方体の一辺の2倍になりますから#5で書かれているように
r/a=√3/8になります。

体積がa^3の立方体の中に半径rの球が8個含まれているわけですから充填率はπ√3/16=0.34となります。
    • good
    • 5

shinn418さん、こんばんは。



shinn418さんのおっしゃる通り、ダイヤモンド型構造内に含まれる原子数は「8」でした。すみません。

aとrの関係式はshinn418さんの考えは間違っています。aとrの関係式は

√3×a=8r

です。もう一度ダイヤモンド型構造を対角線で切ったイメージを練り直してみてください(^^)
    • good
    • 2

すみません。

補足がありました。

「rは原子半径」と書きましたが、rは格子一辺aと原始半径rとの関係を自分で導いて下さい。ヒントは格子を対角線で切ったときのイメージです。
    • good
    • 2

前にダイヤモンドの単位格子についての質問がありました。


http://oshiete1.goo.ne.jp/qa2870682.html

単位格子の確認は出来ていますか。
この質問の中でdoc sunday様は面心立方と解答なさっていました。でも面心立方ではありません。正4面体構造で炭素が結合して成長している構造と面心立方とは両立しません。
単位格子と単位格子に含まれる原子数がわかると充填率がわかるはずです。C-Cの共有結合距離を出すときに基本となるのはこの構造のはずです。完全な正四面体であって、炭素のみの結合はこれしかありません。Hの入った分子の場合はこれからずれるはずです。(ズレは小さいとは思います。)
    • good
    • 0
この回答へのお礼

有難うございます。

お礼日時:2007/04/22 13:00

「面心」立方かと思いましたが、ずっと空いているのですね。


http://www.nihongo.com/diamond/kihon/diamseis.htm
http://leed4.mm.kyushu-u.ac.jp/surface/ikeda/dia …
    • good
    • 0
この回答へのお礼

有難うございます。

お礼日時:2007/04/22 13:00

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qダイヤモンドの構造がわかりません(単位格子)

http://leed4.mm.kyushu-u.ac.jp/surface/ikeda/diamond2.gif

↑は真上から見た図です。これをさらに小さな立方体8個ぐらいに分けられるらしいですが、わけがわかりません。考え方のこつのようなものを教えてください。

よろしくお願いします。

Aベストアンサー

面心立方で書いてありますね。
これで正しいのですが、分かり難いので「忘れて下さい」。
炭素のダイアモンドにおける結合は全て正四面体である事だけ覚えていれば結構です。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q六方最密格子の充填率の求め方

六方最密格子の充填率の求め方が分りません。今分っているのは面心立方格子と同じ0.74となることくらいです。
立方格子の場合は、原子を半径rの球体と考えて立方体の体積をrの式で求め、立方体内に含まれる原子の体積を求め、充填率を出しました。
六方の場合は…、同じようにやれると思うのですが、六角柱の体積をどう求めたらいいのか分りませんし、原子も一つがどれだけ立体内にあるのかも想像しにくいです。
解き方分る方ご教授願います。

Aベストアンサー

下記URLを参照ください.

参考URL:http://ja.wikipedia.org/wiki/%E5%85%AD%E6%96%B9%E6%9C%80%E5%AF%86%E5%85%85%E5%A1%AB%E6%A7%8B%E9%80%A0

Qこの問題がわかりません!(化学か物理?が得意な方)

この問題がわかりません!(化学か物理?が得意な方)


格子定数をαとするとき、以下の結晶構造における最近接原子間距離および空間充填率を求めよ。

(1)単純立方格子
(2)体心立方格子

できれば詳しく教えていただけると助かります。

Aベストアンサー

こんにちは。

>>>(化学か物理?が得意な方)

固体物理ですね。

【最近接原子間距離】
(1)一辺がαの立方体で、最も近い頂点どうしの距離はαなのでα。

(2)
この図を見ながら。
http://ja.wikipedia.org/wiki/%E4%BD%93%E5%BF%83%E7%AB%8B%E6%96%B9%E6%A0%BC%E5%AD%90%E6%A7%8B%E9%80%A0
最近接の候補は、立方体の頂点間距離のαか、1つの頂点と立方体の中心との距離の2つに絞られます。
1つの頂点と立方体の中心との距離を求めてみましょう。
頂点のどれかの座標を(0,0,0)と置けば、中心の座標は(α/2,α/2,α/2)なので、
三平方の定理を2回使えば、
距離 = √((α/2)^2 + (α/2)^2 + (α/2)^2)
 = α/2・√(1+1+1)
 = √3/2・α
√3/2 = 0.866・・ < 1 なので、
体心立方の最近接原子間距離は、0.87α

【空間充填率】
(1)52% (2)68%
2~3ページを参照
http://sstweb.ee.ous.ac.jp/lecture/ee/SoldStatePhisics/sp20081211.pdf

こんにちは。

>>>(化学か物理?が得意な方)

固体物理ですね。

【最近接原子間距離】
(1)一辺がαの立方体で、最も近い頂点どうしの距離はαなのでα。

(2)
この図を見ながら。
http://ja.wikipedia.org/wiki/%E4%BD%93%E5%BF%83%E7%AB%8B%E6%96%B9%E6%A0%BC%E5%AD%90%E6%A7%8B%E9%80%A0
最近接の候補は、立方体の頂点間距離のαか、1つの頂点と立方体の中心との距離の2つに絞られます。
1つの頂点と立方体の中心との距離を求めてみましょう。
頂点のどれかの座標を(0,0,0)と置けば、中心の座標...続きを読む

Q格子点数と原子数

結晶について学んでおります。
まず、格子点数と原子数の違いが分かりません。

それで、diamondの単位格子の格子点数、原子数を求めようとしたときに、はたと困りました。
まず、diamondのブラベー格子がFである、そのことから、理解ができませんでした。
diamondは、fccを1/4,1/4,1/4ずらしたものの組み合わせだということは知っています。そこからdiamondのブラベー格子がFであるとなるのでしょうか。

ごめんなさい。。書いてて混乱してきました。。意味がとれない部分もあると思いますが、教えてください。

Aベストアンサー

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を結んでできる、対面が平行な六面体のことを単位胞または単位格子といいます。
単位胞は繰り返しのユニットとなります。先ほど格子はフレームを含まないと言いましたが、
それはこの結び方(単位胞の決め方)が自由であるということです。星座みたいなものだと思って下さい。
べつに菱餅のような形に結んでもいいんですが、ふつうはもっとわかりやすい(対称性の高い)立方体
などの形になるように結びます。

「単純立方格子の単位胞(立方体)にはいくつの格子点が含まれるか」という問題には
1と答えます。なぜ8ではないかというと、立方体の頂点に全て格子点があると考えると、
繰り返し並べた時に別々の立方体から来た8個の格子点が一カ所にかぶってしまうからです。
ですからそれぞれの立方体について8つの頂点のうちたとえば左下手前のものだけをその立方体に
所属する格子点と考えれば1になるわけです。そこを原点O(0,0,0)にとります。

単純立方格子をとる結晶構造のうちもっともシンプルなのは単純立方構造(simple cubic; sc)です。
これは単位胞の頂点の位置だけに一種類の原子を置いた構造で、ポロニウムのα相がこの構造です。
「格子」と「構造」はどう違うのかと思われるかもしれませんね。実際には同一視されている解説が
ほとんどですが、格子はまだ原子(やイオン)を置く前の、単なる位置の基準点の集合です。
単位胞の中に原子を置いて初めて構造になります。これが「結晶格子×単位構造=結晶構造」の意味です。
scの場合は「単純立方構造の単位胞にはいくつの原子が含まれるか」の答も1となります。

他には塩化セシウム型構造が単純立方格子です。これはセシウムイオン(Cs+)を単純立方格子の
原点(0,0,0)に置いたとき、塩化物イオン(Cl-)が立方体の中央(1/2,1/2,1/2)にくる構造です。
Cs+(0,0,0)とCl-(1/2,1/2,1/2)のペアが単位構造であり、それが各単位胞の中にあるということです。
別の見方をすればCs+だけでできた単純立方構造とCl-だけでできた単純立方構造を(1/2,1/2,1/2)だけ
ずらして重ねたと考えることもできます。しかし、あくまでも塩化セシウム構造としての単位胞は
どちらか片方だけですから、単位胞内の格子点数は1のままで原子数は2となります。

やっとダイアモンド構造に近づいてきました。ダイアモンド格子は面心立方格子(cF)をとります。
単純立方格子と比べると立方体の中にあらかじめ
 O(0,0,0)、A(0,1/2,1/2)、B(1/2,0,1/2)、C(1/2,1/2,0)
の4か所に格子点があります。他の点、たとえば(1/2,1/2,1)の格子点はひとつとなりの立方体
に所属するものと考えます。あらかじめ格子点が4つあるというのはどういう事かと言うと、
うまく単位胞を選ぶと立方体の1/4の体積のものが作れて、その中の格子点数は1になります。
このような単位胞は基本単位胞といい、たとえばOA、OB、OCを三辺とする菱形六面体がそのひとつ
です。しかしそれでは形が分かりにくいのでふつうは体積4倍の立方体の単位胞を考える代わりに
格子点数が4になっているのです。

面心立方構造(fcc)は面心立方格子の格子点にだけ原子を置いたもので、単位胞内の
格子点数は4、原子数も4です。一方、ダイヤモンド構造は炭素原子を
O(0,0,0)、O'(1/4,1/4,1/4)
A(0,1/2,1/2)、A'(1/4,3/4,3/4)
B(1/2,0,1/2)、B'(3/4,1/4,3/4)
C(1/2,1/2,0)、C'(3/4,3/4,1/4)
の8カ所に置いた構造です。これは原点に付随する(0,0,0)(1/4,1/4,1/4)の2つの炭素原子を
単位構造として、A、B、Cの3格子点にもコピーしたものと考えることができます。fccを
(1/4,1/4,1/4)だけ平行移動して重ねたものと捉えても構いませんが、ダイヤモンド構造として
の単位胞はあくまでも(0,0,0)を原点とするものだけですから、格子点数4、原子数8となります。

以上長くなってしまいましたがわからなければまたおっしゃって下さい。

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を...続きを読む

Qダイヤモンドの構造因子

ダイヤモンドの構造因子を求めると
f{1+exp(-πi(h+k))+exp(-πi(k+l))+exp(-πi(l+h))+exp((-πi/2)(h+k+l))+exp((-πi/2)(3h+3k+l))+exp((-πi/2)(3h+k+3l))+exp((-πi/2)(h+3k+3l))}
となったのですが、この構造因子が0になる指数がうまく求められません。どのように考えればよいでしょうか。

Aベストアンサー

面心立方の原子位置は

(0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0, 1/2, 1/2)

これをベクトルでri (i=1-4)と書くことにします.

ダイアモンド格子はこの座標に(1/4,1/4,1/4)を加えた位置に同種原子を置くことで構成されます.そこで(1/4,1/4,1/4)をベクトルdと書くことにすると,追加した原子の位置ベクトルはd+ri (i=1-4).したがって,逆格子ベクトルをGとして構造因子は

S = f Σ[i=1-4] { e^{-2πi G・ri} + e^{-2πi G・(d+ri)}
= f (1 + e^{-2πi G・d} ) (Σ[i=1-4] e^{-2πi G・ri})
= (1 + e^{-2πi・(h+k+l)/4}) S(FCC)

従って消滅則はFCCの消滅則に加えて前の()が0になる条件として

2π(h+k+l)/4 = (2n+1)π 従って h+k+l = 4n+2

が追加になります.

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q格子についてです。

格子についてです。

aを通常の格子定数とするとき、単純、体心、面心立方格子の基本格子の体積は、それぞれa^3,(a^3)/2,(a^3)/4となることを示してください。単位体積当たりの格子点数(原子数)はこれらの逆数で与えられます。

Aベストアンサー

単純立方格子は自明。

体心立方格子の基本格子ベクトルは,
a1~ = a/2(1,1,1),a2~ = a/2(1,1,-1),a3~ = a/2(-1,1,1)
ですから,求める体積は
V = a1~・a2~×a3~ = | a1 a2 a3 | = (a/2)^3×4 = a^3/2

面心立方格子の基本格子ベクトルは,
a1~ = a/2(0,1,1),a2~ = a/2(1,0,1),a3~ = a/2(1,1,0)
ですから,求める体積は
V = a1~・a2~×a3~ = | a1 a2 a3 | = (a/2)^3×2 = a^3/4

となると思います。

参考URL:http://www2.kobe-u.ac.jp/~lerl2/ssp%28I%29_04_16_08.pdf

Q体心立方格子の基本単位格子

キッテルの固体物理学入門第八版のP.11の図9に体心立方格子の基本単位格子が書いてありますが,その基本単位格子以外にも基本単位格子は存在しますよね.そこで,体心立方格子の底面4つと体心の位置の4つを結んでできる平行六面体(図にのせたものです.)は基本単位格子になっていると思うのですが,あっていますか

Aベストアンサー

対称性が良くないので分かりにくくなるとか計算が煩雑になるなどの点を気にしないのなら、仰るような基本単位格子を選んでも問題はありません。

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング