距離化可能で可分な位相空間は第2可算公理を満足するというのがイマイチ
ピンとこないのですが、どなたか分かる方いらっしゃいませんでしょうか??
ヒントでもいいので教えてください。
後、同様に位相のことなのですが、Rは通常の位相に関して可分であると
いうのもよく分かりません。どうか、よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

この事実についてはどのような本で知ったのでしょうか。

基本的な位相数学の
教科書なら証明も書いてあると思いますが。また2つ目の質問は通常の位相数学の
教科書なら必ず例が載っていると思いますが。
とりあえず証明を

距離化可能で可分な位相空間をXとします。距離化可能ですから最初からXは距離空間
と考えて構いません。そこで、各点x∈X の近傍U_ε (x)は
U_ε(x) = { y ∈ X : | x - y | < ε, ε> 0 }
と書けます。

Xが可分と言うのは、Xのある可算集合で稠密なものがとれるということです。
このような集合をAとします。Aは可算なのでA={a_i }(i= 1,2,3 …)と書けます。
このとき各a_i を中心とする半径 1/mの開球 U_(1/m) ( a_i)全体の集合
S={ U_(1/m) ( a_i) : i,m は自然数 }
が第二可算公理を満たします。以下はそのことを証明します。

Sが可算集合であることは自明ですね。さらにSがXの開基であることを言う必要が
ありますがそれはXの任意の開集合の任意の点 x に対して、x を含み、その開集合に
含まれるようなSの要素が存在することをいえば良いのです。

さて任意の開集合O⊂X をとり、x ∈ O を一つ選びます。Oは開集合ですから、
x の近傍でOに含まれるものをとることが出来ます。
先に書いたように x の任意の近傍は、ある正数εにより x から距離ε以下の点の集合
U_ε(x) として表せます。そこでいま U_ε(x) ⊂ O とします。
次に 1/n < ε/2 となるような n を選びます。A は稠密ですから、Aの中から x との距離が
1/n 未満であるような点 a_j をとることが出来ます。すなわち
|x - a_j | < 1/n
です。このとき a_j を中心とする半径 1/n の開球 U_(1/n) ( a_i) はxを含んでおりかつ
U_ε(x)に含まれます。
x ∈ U_(1/n) ( a_i) ⊂ U_ε(x) ⊂ O
そして U_(1/n) ( a_i) ∈ S ですから SがXの開基であることが示せました。 ■

2つめについては有理数全体の集合Qが可算集合でありRの中で稠密であることを
思い出していただければすぐわかると思います。

わかりにくければ補足質問をして下さい。
    • good
    • 0
この回答へのお礼

ほんと、丁寧な説明を頂きまして感謝しております。
(うちの先生よりも分かりやすい・・)
ありがとうございました。

これは、内田先生といった方が書かれた参考書を勉強していて、問題を
見つけたのですが、解答がかなり簡易で私のおつむでは全く理解が出来
なかったのです。これはかなり良い本とうちの先生は言っていたのですが、
そうなのですか??ちょっと疑問・・。

2つめに関しても、ちょっと出来そうな感じ(?)がしてきました。
とにかく、やってみます。
本当にありがとうございました。

お礼日時:2001/01/20 22:25

うわ。

位相線形空間ですね。この世界って、どっぷり浸かるとトリップしますよね。
ええと、
●距離化可能ってのは、位相線形空間の位相をノルムで与えることが出来るという意味。
●寡聞にして「可分」て知りませんが、たぶん「分離可能」の事。1点からなる集合が閉である空間の事で、つまり∩{零要素の全ての近傍} が零要素以外の点を含まない。(そうじゃないのを考える方がしんどくないです?)
●第二可算公理てのは、可算基底を持つ位相空間のこと。高々可算個の開集合からなる基底が存在するってこと。
●基底ってのは開集合の集合であって、全ての開集合を基底の要素の(無限)合併集合として表せるようなもの。
そして、距離空間の場合「可算基底を持つ⇔至る所稠密な可算集合が存在する」ですよね。だから「分離可能→至る所稠密な可算集合が存在する」を示せば良いわけです。で、どうするんだろ。

これじゃあヒントもになってへんがな..... やっぱりゴールデンスタンダードはコルモゴロフ,フォーミン「函数解析の基礎」じゃないでしょうか。どうもいーかげんですいません。
    • good
    • 0
この回答へのお礼

ほんと、トリップしている状態です・・(苦笑)

ありがとうございます。参考になります。
(ぜんぜんいいかげんではありませんよ!)
もう1度勉強やり直さなければ・・と日々感じております。

ああ、頭が良くなりたい・・。

お礼日時:2001/01/20 22:17

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q第2可算公理が成立すると第1可算公理が成立します。ところで、その逆「第

第2可算公理が成立すると第1可算公理が成立します。ところで、その逆「第1可算公理が成立するが第2可算公理が成立する」は必ずしも言えないのでしょうか。それはどのような場合でしょうか。

Aベストアンサー

第一可算公理は、各点の近傍基が可算ですから、点ごとの性質です。第二可算公理は開基が可算ですから、全体の性質です。
だから、非可算個の点が広い範囲に広がっていれば第一可算公理は成り立って第二可算公理が成り立たない場合もあります。ANo.3に書かれている実数Rに離散位相を入れた例は点をばらばらにした例です。この空間は可分でなく、距離化可能なので第二可算公理は満たしません。
# 距離空間では可分と第二可算公理は同値

なお、第一可算公理が成り立って可分でも第二可算公理が成り立たないこともあります。ANo.2に書かれたゾルゲンフライ直線(Sorgenfrey line)がその例です。ゾルゲンフライ直線は実数に半開区間からなる位相を入れたもので、色々と変な性質を持っているので位相空間論ではよく出てきます。覚えておいて損はないでしょう。
# 参考 http://www.math.tsukuba.ac.jp/~pen/topology1/top-ex03.pdf

Q第2可算公理

X,Yが第2可算性を持つ位相空間のとき、X×Yも第2可算性を持つことを示せ。
という問題です。

第2可算性を持つ⇔位相空間が可算集合からなる基を持つ
で定義されています。

更に、
位相空間において、β⊂Oは、任意の開集合がβの要素の和集合で書けるとき、位相Oの基と言います。

証明の方針がいまいち分からないので、どなたかアドバイスもしくは証明をお願いします。

Aベストアンサー

Xの開基とYの開基の直積から、直積位相の開基を構成するときに、
任意濃度の合併を作るといっても、もとになる開基の直積が可算だから、
合併する開集合の選び出し方が可算通りしかなく、直積位相の開基も可算にしかならない
ということです。

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む

Q上極限、下極限が理解できません

大学で習っているのですが、limsupやliminfなどが定義を見ても、どういう意味なのか理解できません。

上界、下界、上限、下限については例があったので、なんとか理解することができました。


X={1,2,3}⊆Zのとき、下界の1つとして0がとれる。

こんな感じで、簡単な例つきで説明して下さると、理解できると思うのですが・・・。
よろしくお願いします。

Aベストアンサー

上極限

sin(n)で考えましょう。nは自然数です。
sin(n)は振動しているので極限はないけど、
「nが大きい時(というか初めからだけど)1を超えることはない」
「1付近の値を何回も(無限回)とる」
から1が上極限です。
ことばでいえば、
「ずっと先のほうでは、上極限の値より大きくならない」
(極限の意味でです。∀ε>0に対し上極限+εより大きくならないってことです)



この例では下極限はー1ですね。

(sin(n)-1)*n の場合だと、
上極限は0で、下極限は「なし」(-∞)となりますね。


人気Q&Aランキング