f(z)=z^(-1)*cotzのz=0における留数の求め方が分かりません。

z=0が2位の極である所までは分かるのですが、
公式を適用しても留数が求まらず行き詰っています。
回答よろしくお願いします。

A 回答 (3件)

 どんな公式を使ったのでしょうか。


 留数の基本どおりに求めるのが簡単なように思います。

 関数f(z)のz=0における留数をb1とすると、b1は関数f(z)をz=0でローラン展開したときの1/zの係数になっていますので、
  f(z)=1/z^2-z/3-z^2/45-・・・
 ∴b1=0
と求めることができます。
 このとき、g(z)=z^2・f(z)=z・cot(z)とおくと、g'(0)がg(z)を展開したときのzの係数であることから、f(z)の1/zの係数になることを利用すれば、より早く解くことができます。
  b1=g'(0)=[z→0]lim[cot(z)-z/{sin(z)}^2]=0 (ロピタルの定理を駆使)

 一方、f(z)が正則関数の商であることを利用するものでは、
  f(z)=p(z)/q(z), p(z)=cos(z), q(z)=z・sin(z)
とおくと、2位の極においける留数は
  b1=2p'(0)/q''(0)-2/3・p(0)q'''(0)/{q''(0)}^2
となりますので、
  p(z)=cos(z)    p(0)=1
  p'(z)=-sin(z)    p'(z)=0

  q(z)=z・sin(z)
  q'(z)=sin(z)+z・cos(z)
  q''(z)=2cos(z)-z・sin(z)  q''(0)=2
  q'''(z)=-3sin(z)-z・cos(z) q'''(0)=0
から、
  b1=0
と求めることもできますが、3階微分まで行わなければならないので大変です。
    • good
    • 0

 #2です。


 どうやら、極限値の計算で困ったようですね。

> lim[z→0]d/dz[z^2*f(z)]
 =lim[z→0][cot(z)-z/{sin(z)}^2]
 =lim[z→0][{sin(2z)/2-z}/{sin(z)}^2]
 =lim[z→0][{cos(2z)-1}/sin(2z)]
 =lim[z→0][-2sin(2z)/{2cos(2z)}]
 =0
    • good
    • 0
この回答へのお礼

ロピタルの定理を利用すれば良いのですか!それには気付きませんでした!また、ローラン展開を利用しても良いのですね!留数の基本を忘れていました。明解な回答ありがとうございました。

お礼日時:2007/06/10 18:30

>公式を適用しても留数が求まらず行き詰っています。


その適用しようとした「公式」をプリーズ。

この回答への補足

z=0が2位の極なので、Res[f,0]=lim[z→0]d/dz[z^2*f(z)]
で求めようとすると、分母が0になって求まらないのです。

補足日時:2007/06/10 09:08
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分公式の記述での使い方

記述式の問題で積分公式(インテグラル無しで面積を求められるやつです)を使っても減点はないでしょうか。


例えば、こんな感じで

積分公式よりS=~



積分公式は教科書に載っていないので、こういう使い方が受験に通じるのか不安です。回答お願いします。

Aベストアンサー

こんばんわ。

確かに「積分公式」ってなんのことでしょうか?
それも「インテグラル無しで面積を求められるやつ」とは・・・?

もしかして、次のような式のことですか?
∫[α→β] (x-α)(x-β) dx= -1/6* (β-α)^3

いずれにしても、
>積分公式よりS=~
といった表現では通用しません。
すでに、ここの質問でも通用していないくらいですから。

単に積分の計算であれば、とくに明記せずに用いてもいいと思います。
この式自体を示せと言われれば、きちんと計算しないといけません。

Q複素共役をZ*とすると Z=0^0⇒Z・Z*=1

  合っているかどうかわかりませんが

  Z=0^0 ⇒ Z^n=1 ⇒ Z・Z*=1

  と、なりました。間違っているのかどうか誰かお教えください。

  Z=0^0=0^(-0)=1÷0^0 なので

  Z^2=1 ⇒ Z^n=1 ⇒ z=x+yi 、x^2+y^2=1

  となりました。これは何か数学的に意味があるのでしょうか?

Aベストアンサー

> 0 にならないことがわかれば
> 私としてはそれでいいです。

そうですか。
質問文中の結論と違うようですが、
貴方がそれでいいのなら、それでいいでしょう。
0 にならないことは、示せていると思います。

ただし、「0 にならない」というのは、
「0 以外の何かになる」ということではなく、
「0 とするとうまくいかないが、
他の値でうまくいくかどうかは、また別の話」
という意味です。
所望の要件を満たす「0 の 0 乗」が存在しない
可能性は残っています。

それ以前に、「何を前提として」
0 にならないことを示したのかが、
(想像はできますが、)明確に書かれていません。
そこを明らかにしないと、何を証明したのかが
いまいちはっきりしません。

Q数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題と

数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題とくかわかりません。問題のどの部分を見てどちらの公式を使うか教えて下さい。

Aベストアンサー

まず置換積分できるか調べましょう.このためには被積分関数を二つの関数の積と考え,一方の関数が他方の関数の原始関数の関数になっていれば置換積分が使えます.すなわち,被積分関数を f(x)g(x) と表したとき,G'(x)=g(x) である G(x) を用いて f(x)=h(G(x)) となる関数 h(u) が見つかれば
∫f(x)g(x)dx = ∫h(G(x))G'(x)dx = ∫h(u)du
です.例えば
(log 2x)/(x log x^2) = h(log x){log x}'
h(u) = (u + log 2) / 2 u = 1/2 + (log 2)/2u
だから
∫(log 2x)/(x log x^2)dx = (1/2){log x + (log 2)log(log x)} + C
となります.
置換積分がダメそうなら部分積分できるか調べましょう.概してこちらの方が調べるのが面倒です(とくに漸化式を使う場合).

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。

Q分点座標が±0.5のGauss-Legendre積分公式を知りませんか。

高精度化が必要な数値計算をやっています。
特に、数値積分の高精度化が必要なため、Gauss-Legendre積分公式の使用を考えています。
ただし、解く方程式が積分方程式であるなどの理由からそのままでは使用できません。
使用するためには、Gauss-Legendre積分公式の分点座標が区間の中心である必要があります。
例えば、分点数が2の場合、通常は座標x=±0.57735...重みw=1ですが、これを座標x=±0.5とできるような積分公式はないでしょうか?

Aベストアンサー

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の多項式で近似できるf(x)を扱う場合に旨く行きます。

 さて、ご質問は、おそらく積分範囲 x=-1~1に対してガウス・ルジャンドルの数値積分を使いたいけれど、次数を2にして、分点、すなわちサンプリングする点を±0.5だけにしたい、という注文です。たぶん、±0.5における被積分関数f(x)の値なら簡単に求められる、というのでしょう。
 もちろん、適当な一次式ではない関数g(たとえば3次関数)を用いて
x=g(t)
という変数変換でx=±0.5をt=±0.57.... に移し同時にx=±1をt=±1に移す、ということ自体は簡単です。するとf(g(t))と
dx/dt = g'(t)
の積を被積分関数としてt=-1~1について積分することになります。この場合、被積分関数 f(g(t)) g'(t) がtの2次多項式で近似できるんでないと、2次のガウス・ルジャンドル法を使って精度が出るという保証はありません。
 高精度の数値積分をやりたいと仰っている割に、f(x)が高々低次の多項式で近似してしまえるんだったら、何もガウス・ルジャンドル法に拘る必要はないんで、例えばニュートン・コーツ型の数値積分、すなわち分点を等間隔に取る方法でも十分じゃないの?と思うんですが、どうなんでしょうね。

 或いは分点の数をもっと増やして良い、というのだったら、代わりに例えば-1~-0.5, -0.5~0.5, 0.5~1の3つの区間に分けてそれぞれ積分するのでも良い。被積分関数の傾きが急な部分でサンプリングを細かくしてやるというのも精度が出ますし、その代わりに適当な変数変換をして等間隔サンプリングしたり、ガウス・ルジャンドル法を使ったり…いろんな処方が考えられます。

 ですから、「±0.5」と限定なさる理由をもう少し明確に補足して戴くか、具体的に被積分関数をupして戴かないと、ろくな回答にならないと思います。

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の...続きを読む

Qx*y=log(e^x+e^y)と定義すると、(x*y)+z=(x+z)*(y+z)

x、y∈Rに対して
x*y=log(e^x+e^y)
と定義すると、
(x*y)+z=(x+z)*(y+z)
が成り立ちます。
分配法則の*と+を逆にしたような感じですが、この*から何かしらの代数的な事実が従うのでしょうか?
この*の意味は何なのでしょうか?

x*x=aのとき、x=√aと定めと、
√(a*b)≧(a+b)/2
といった相加相乗平均の関係の類似は成り立つようですが。

Aベストアンサー

e^x=X, e^y=Y, e^z=Z と置いて考えましょう。
e^(x*y)=e^x+e^y → Z=X+Y
e^(x+y)=e^x*e^y → Z=X*Y
つまり、正の数の加算と乗算になります。

>分配法則の*と+を逆にしたような感じですが

まさにその通りです。入れ替えて見てください。

>√(a*b)≧(a+b)/2

通常の相加相乗平均とは逆ですね。

Q数学II「微分・積分」で面積を求める公式

6分の1の公式や3分の1の公式みたいに、積分を利用せずに面積を求められる公式って他にありませんか?

Aベストアンサー

(1)や(2)は高校数学のレベルで十分理解できると思います。
これらは,数値積分と呼ばれるもので,近似的に積分(求積)を実現しています。
参考になれば良いのですが。

(1)台形法
(2)シンプソン法
(3)ルンゲ・クッタ法

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Q積分の公式の導出について

積分の公式の導出について

∫{(ax+b)^n}dxの積分公式は、(((ax+b)^n+1)/a(n+1))
なのですが、どのようにすれば導出できるのでしょうか?

ご回答よろしくお願い致します。

Aベストアンサー

ax+b=s とおくと ds/dx=a つまり dx=ds/a
従って 与式=∫s^n/a ds
あとは積分してsを元に戻すだけです。

Qx>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、

x>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、
xy+yz+zxの最大値を求めよ。

コーシーシュワルツの不等式を使うとでるとおもうが、
別解での解答はどうなるのか。よろしくお願いします。

Aベストアンサー

どういう風にシュワルツを使うのか。。。。。w
そんな仰々しいものを持ち出さなくても、教科書に載ってる不等式(絶対不等式)で用が足りる。



x、y、zは実数から、x^2+y^2+z^2≧xy+yz+zx で終わり。
等号は、x>0,y>0,z>0から、x=y=z=a/√3の時。


おすすめ情報