プロが教えるわが家の防犯対策術!

金属と半導体とで、その温度依存性がことなる理由がよくわからないので教えてください。よろしくおねがいします。

A 回答 (2件)

ymmasayan さんのおっしゃるように,電気抵抗が一番ポピュラーでしょうね.



簡単のため電子が電流を運ぶとしましょう
(電子の抜けた穴 --- 正孔 --- が電流を運ぶ場合もあります).
電子の電荷は一定ですから,
電流がどれくらい流れるかは,電流に関与する電子の数(正確には密度)と
その電子の平均速度の積で決まります.
積載量が一定のトラックで運ぶ物流量が,トラックの台数とトラックの平均速度との
積で決まるのと同じことです.

温度が上がると電子の平均速度は下がります.
これは金属でも半導体でも共通.
さて,金属で電流に関与する電子数は温度にはほとんど無関係です.
したがって,金属では温度が上がると電流が流れにくく(すなわち電気抵抗が増加)
なります.

ところが,半導体では温度が上がると電流に関与する電子数が急速に増えます.
この電子数増加は平均速度の減少よりはるかに変化が急です.
したがって,半導体では電流に関与する電子数の増加が効いて
温度が上がると電流が流れやすく(すなわち電気抵抗が減少)なります.
    • good
    • 5

温度依存性といっても色々考えられますが、一番ポピュラーなのは電気抵抗でしょうね。



参考URLのような実験をよくやりますよね。
金属 半導体 温度依存性 で検索すれば、ぞろぞろ出てきます。
某大学の物性工学の期末テストの模範解答などもあります。参考にして下さい。

参考URL:http://www-esl2.isc.chubu.ac.jp/sakata/kkjs/them …
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qなぜ、金属は温度を下げると抵抗が下がる?

金属は温度を下げていくと抵抗が下がりますが、これはなぜなのか教えてください。
短文で申し訳ありませんが、どなたかよろしくお願いします。

Aベストアンサー

No1の方の参照サイトで分かると思いますが、もう少し詳しく解説してみます。
典型的な金属では、伝導電子の数は温度にあまり依存しません。従って、電気抵抗を発生させる主な原因としては、構造の欠陥と原子の熱振動(格子振動=フォノン)の二つが挙げられます。
結晶性が良く不純物が少ない良質な金属の場合には、前者の構造欠陥による抵抗は小さく、後者の格子振動の寄与が主体となります。この格子振動は温度が下がると振幅が小さくなるので、抵抗への寄与も小さくなり、従って金属の抵抗は低くなっていきます。
しかし、結晶性が悪かったり不純物の多い金属では温度変化の無い構造欠陥の寄与が大きいために、温度を下げてもそんなに抵抗は下がりません。
このように、低温(普通は4K以下)と高温(室温)の抵抗の比を求めることで、測定対象の金属の品質を評価することも出来ます。
一方、半導体などでは、伝導電子の数自体が温度で変わります。動けない低いエネルギー状態にあった電子が、高温になるほど熱エネルギーをもらって伝導電子へと参加して電気伝導度を上昇させるので、結果的に抵抗は下がります。通常の半導体では、この効果が最も顕著なために、低温では金属と逆に電気抵抗が上がるのです。

No1の方の参照サイトで分かると思いますが、もう少し詳しく解説してみます。
典型的な金属では、伝導電子の数は温度にあまり依存しません。従って、電気抵抗を発生させる主な原因としては、構造の欠陥と原子の熱振動(格子振動=フォノン)の二つが挙げられます。
結晶性が良く不純物が少ない良質な金属の場合には、前者の構造欠陥による抵抗は小さく、後者の格子振動の寄与が主体となります。この格子振動は温度が下がると振幅が小さくなるので、抵抗への寄与も小さくなり、従って金属の抵抗は低くなっていきま...続きを読む

Qキャリアの移動度と温度依存性について

キャリア密度は温度依存性がある理由は分かったのですが、なぜ移動度にも温度依存性があるのか分かりません。

どなたか回答お願いします。

Aベストアンサー

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げられてしまいます。不純物密度が高いほど移動度は小さくなっていきます。しかし、温度が上昇すると、速度の大きいキャリアは、すり抜け、平均速度は大きくなるため、偏向の割合が少なくなるので、移動度は増加していきます。
逆に言えば、キャリア密度が小さいときに、温度が高くなると移動度の減少の割合は大きくなります。

密度と温度の両方が関係してきますので、説明が分かりにくいかもしれません。

最後に中性の不純物によってもキャリアの散乱は受けますが、この場合の移動度は温度にはよらないことが示されています。

散乱機構と移動度の関係式

格子振動∝m*^(-2/5)・T^(-3/2)
イオン化不純物∝m*^(-1/2)T^(3/2)
中性不純物∝m*

m*:有効質量
T:絶対温度

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げら...続きを読む

Qダイオードの温度特性について

ダイオードは温度が高くなると、順方向電圧Vdが小さくなる特性を持ち、その傾きは-2mV/℃といわれています。

トランジスタ設計の本や関連HPを見るとダイオードの特性は下記の式になっていますが、
下記の値を入れて計算すると絶対温度Tが上昇するとVdも上昇する式になってしまいます。
どうしてでしょうか?

Vd = ((K*T)/q)*ln(Id/Is)
  = 1.785e-3*T

K:ボルツマン定数=1.38e-23[J/K]
q:電子の電荷:=1.602e-19[c]
Id:順方向電流=1e-3[A]
Is:飽和電流=1e-14[A]
T:絶対温度

Aベストアンサー

 
 
 以下、Vd,Id の d は省略します、 (q*V/(k*T)) などは (qV/kT) と略記します、 温度Tは300Kとします。


>> トランジスタ設計の本や関連HPを見るとダイオードの特性は下記の式になっていますが、
Vd = ((K*T)/q)*ln(Id/Is)
<<


 ここはぜひ、その式の元の形である
  I = Is・exp(qV/kT) …(1)
の式で覚えてください。半導体の理論は根底が exp(エネルギ/熱エネルギ) という関数から出発してるので、この形で慣れておけば 将来ともお得です。
 で、
Is 自体も exp(-Eg/kT) 的な電流です。 Egはシリコンのバンドギャップエネルギ、kTは温度Tの熱エネルギです。 Is の成分の詳細説明は専門書にゆずるとして、大局的には
  Is = A・exp(-Eg/kT) …(2)
と書けます。
係数 A は今は定数とします。(2)を(1)に入れると、
  I = A・exp(-Eg/kT)・exp(qV/kT) …(3)
両辺をAで割って 両辺を対数取って V=の形にすると、
  V = (1/q){ kT・ln(I/A)+Eg } …(4)
あなたが載せたVdの式より 少し詳しく求まりました。


 さて、
温度係数の定義は 『Tだけが変化する』 です。そのとき I は(何らかの手段で)一定に保たれてるとします。すると(4)式はT以外すべて定数となるので単純に微分できて、
  ∂V/∂T = (1/q)k・ln(I/A) …(5)
これが疑問への答です。これに(3)式を入れると、
  ∂V/∂T = (1/T){ V-Eg/q } …(6)
温度とバンドギャップと電子電荷だけの式になりました。Eg/q は次元が電圧で、バンドギャップ電圧と呼ばれたりします、その値はシリコンで約 1.11[V] です、この機会に暗記しましょう。(6)式を言葉で書くと

  温度係数=(順電圧-1.11 )÷温度 …(7)
  温度300k,順電圧 0.65V のとき、-1.5 mV/K ほど。
  温度300k,順電圧 0.51V のとき、-2 mV/K ほど。

変動は、電流が小さいほど(=順電圧が小さいほど)□□く、高温ほど□□いんですね。このように 使用温度、使用電流、品種、製造ロットによって変わるものなのだ、と覚えてください。



 余談;
詳しく言えば切りがないのですが、 Egそのものも温度Tの関数です。係数Aは回路シミュレータでは温度の3乗がよく使われます。SI単位系に慣れましょう。
それから、他人が書いた式を眺めてるだけでは自分の力が付きません、ぜひ式変形を自分の手で最後までやってみましょう。
 
 

 
 
 以下、Vd,Id の d は省略します、 (q*V/(k*T)) などは (qV/kT) と略記します、 温度Tは300Kとします。


>> トランジスタ設計の本や関連HPを見るとダイオードの特性は下記の式になっていますが、
Vd = ((K*T)/q)*ln(Id/Is)
<<


 ここはぜひ、その式の元の形である
  I = Is・exp(qV/kT) …(1)
の式で覚えてください。半導体の理論は根底が exp(エネルギ/熱エネルギ) という関数から出発してるので、この形で慣れておけば 将来ともお得です。
 で、
Is 自体も exp(-Eg/kT) 的な電流...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Q可変交流電圧器

可変交流電圧器(スライダックでしたっけ?)はどういう原理で可変できるのでしょうか?
基本はトランジスターと同じなのでしょうか?
自作可能でしょうか?
できるのならば自作してみたいと思うのですが(素人です)、
その回路などが書いてある文献・Webページなどがあれば教えてください。
お願いします。

Aベストアンサー

こんにちは。
スライダックスは、トランジスター回路ではありません。
トランスの2次側に沢山のタップを出してあって、それをスイッチで切り替えるものです。
2次巻線をつけずに1次巻線に直接タップを付けるオートトランス方式もあります。

昔、真空管アンプが大流行だった頃、トランスを自作するツワモノもいたので、不可能とはいいませんが、端子間の絶縁確保、摺動子で複数の端子がショートしないようにするなど、結構大変だと思います。

むしろ技術的には、一度整流して直流にしてまた交流に変えるAC-ACインバーターの方が作りやすいかもしれません。
ただ、可変範囲を広く取ると・・・結構きついかな?

Qトランジスタ 温度特性

トランジスタは何故温度が上昇したら電流が流れやすくなるのですか?
詳しくお願いします。

Aベストアンサー

簡単に説明すると、電子の活動が温度上昇に伴って活発になるからです。
下記のサイトの「動作の原理」の説明で電子が移動する速度が上昇し、キャリアとして電流が流れるのが多くなるからです。

トランジスタ
http://ja.wikipedia.org/wiki/%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B8%E3%82%B9%E3%82%BF

Qホール効果(van der pauw法)について

ホール効果で測定できないような薄い半導体はどうするんだろうと疑問に思い調べた結果、van der pauw法という方法で薄板状の半導体の物性について測定できると本で読みました。
そこで、さらに疑問をもったのですが、酸化物半導体や有機半導体などは、酸化物や有機物なので電流を非常に流しにくいと思います。測定できるのでしょうか?
それと,もう一点上記にも繋がる事ですが、試料に対し電極は十分に小さく、障壁を造らないものと書いてあったのですが、どれぐらいの割合まで小さくする必要があるのでしょうか?電極小さくすることにより、電流は流しにくくなると思いますし、大きくすると何が問題なのでしょうか?何か参考書や参考URL有りましたら教えてください。よろしくお願いします。

Aベストアンサー

ホール効果は測定法を知っているだけで、実際の測定は通常の電気抵抗測定しか経験無いのですが、一応薄膜の測定をやっている者です。
「薄い」というのは薄膜形状の半導体と考えて良いのでしょうか?その場合、Pauw法のような解釈の面倒な方法を使わなくても、試料を矩形状に作って、長手方向と横方向に電極を作ればオーソドックスなホール測定が出来ますよ。厚み方向が一定で薄ければ、試料内での電流分布も少ないですから測定はやりやすくなります。
通常の直流電源と電圧計の組み合わせで、メガオーム程度なら測定は可能です。電気抵抗が有る程度高い方がホール電圧が大きく出るので、むしろ測定はしやすいと思います。逆に、抵抗が低いとホール電圧が低くて、電極の接触抵抗や起電力の影響を正確に除かなくてはいけなくなって注意深い測定が要求されます。
電極の件はPauw法に対する疑問でしょうか?上記の通常の薄膜測定の場合には、縦方向電極=電流を流す電極は、試料の幅分べったりと作ります。その方が、試料中を均一に電流が流れやすいからです。逆に、ホール電圧を測る横方向の電極は、出来るだけ小さく同じ縦位置に作ります。電極は通常非常に導電性の良い金属なので、電極の付いた部分はショートされたことと同じになり、その範囲のホール電圧が消されてしまうからです。
縦位置を出来るだけ合わせるのは、電流の流れる方向に電極の位置ずれが生じるとその分だけ電圧降下を拾ってしまうからです。測定時に逆電流測定をすればその誤差は原理的には消せますが、余計な誤差は作らない方が望ましいです。
Pauw方は詳しくないのですが、やはり電極の面積分は同じようにショートすることになりますから、あまり大きくし過ぎない方が望ましいと思います。Pauw法は4カ所の電極を設けますし、10mm角の試料に直径5mmの電極はいくらんなんでも大きいと思いますよ。電極同士で接触しちゃいません?(笑)
どういう形状の試料、材質か分かりませんが、機械的接触や導電性ペーストを使えば、電極は1,2mmで十分なはずです。
それに、どの測定法を使っても、電極から流れ込んだ電流は直ぐに試料内に均一に拡散する(と想定している?)ので、導電性の良い電極は、よほど小さい(ミクロンオーダー)サイズにしない限り測定電流の制限に影響しませんよ。測定試料の抵抗が高ければ、測定電流は少ないのでなおさら電極の大きさの心配は不要です。
最後に抵抗率に関してですが、測定するのは「抵抗」であって「抵抗率」ではないことに注意してください。抵抗率は、測定した抵抗値に測定試料の大きさの換算を行って、対象試料の固有の物性値として算出するものです。例えば、10cm角1cm長さの抵抗率1kオームcmの試料の抵抗は10オームですが、0.1mm角で10cm長さの抵抗率1オームcmの試料の抵抗は100kオームになってしまいます。測定可能な抵抗値ですが、私の経験では、上述のように通常の直流電源と電圧計の組み合わせでメガオーム程度、エレクトロメーターを使って100Gオーム程度が直流測定可能だと思います。それ以上の抵抗は交流法が適当だと思います。
抵抗率そのものに特に上限も下限も有りません。通常の半導体で10~1mオームcm程度、金属で1m~1マイクロオームcm程度です。

ホール効果は測定法を知っているだけで、実際の測定は通常の電気抵抗測定しか経験無いのですが、一応薄膜の測定をやっている者です。
「薄い」というのは薄膜形状の半導体と考えて良いのでしょうか?その場合、Pauw法のような解釈の面倒な方法を使わなくても、試料を矩形状に作って、長手方向と横方向に電極を作ればオーソドックスなホール測定が出来ますよ。厚み方向が一定で薄ければ、試料内での電流分布も少ないですから測定はやりやすくなります。
通常の直流電源と電圧計の組み合わせで、メガオーム程度な...続きを読む

QWord 文字を打つと直後の文字が消えていく

いつもお世話になっています。
Word2000を使っているものです。
ある文書を修正しているのですが,文章中に字を打ち込むと後ろの字が消えてしまいます。
分かりにくいですが,
「これを修正します。」
という文章の「これを」と「修正します。」の間に「これから」という単語を入れたときに,その場所にカーソルを合わせて「これから」と打つと,
「これをこれからす。」
となってしまいます。
他の文書では平気です。
何か解決する方法があれば教えて下さい。

Aベストアンサー

入力モードが「挿入」(普通の入力)から、「上書き」になってしまっているのだと思われます。
キーボードに[Insert]というキーがあると思いますので、1度押してみてください。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング