「忠犬もちしば」のAIボットを作ろう!

w=1/zで表される、複素平面z=x+iyから、複素平面w=u+ivへの写像を考える。z平面上の直線x=a(a>0)のw平面上の写像を求めよ。

という問題です。

この問題を解くにあたり、初めて複素関数の勉強をしました。

本を借りてきて調べると、どうやら虚軸または実軸に接する円になる、
というところまでは分かったのですが、円の中心と半径がどのように
なるのかがよく分かりません。

この問題だと、円の中心と半径を求めろということだと思うのですが、
それでいいんですよね?

解き方を教えてください。
よろしくお願いしますm(_ _)m

A 回答 (2件)

z=a+iy


w=u+iv
=1/z=1/(a+iy)=(a-iy)/(a^2+y^2)
u=a/(a^2+y^2)
v=-y/(a^2+y^2)
u^2+v^2=1/(a^2+y^2)=u/a
{u-(1/2a)}^2+v^2=(1/2a)^2
w平面上のw=u+ivの実部uと虚部vの間に円の方程式の関係あり、
x平面上のx=a(実部一定)の直線がw平面上では円に写像されると言うわけです。円の中心zo=1/(2a)+i(0)、半径1/(2a)の円ですね。
    • good
    • 1
この回答へのお礼

複素関数の勉強を初めてした僕にもとても分かりやすかったです!
ありがとうございました!!

お礼日時:2007/07/12 21:02

>w=1/zで表される、複素平面z=x+iyから、複素平面w=u+ivへの写像を考える。

z平面上の直線x=a(a>0)のw平面上の写像を求めよ。

おそらく z-平面上の直線とは、
  z = a+iy (a>0)
のことなのでしょう。しかし「初めての複素関数」にしては手ごわいですよ。

まず、写像の式を変形します。
  w = 1/z = 1/(a+iy) = (1/2a)*{1+(a-iy)/(a+iy)}

以下の写像(処理)を確認してください。
 (a-iy)/(a+iy) :w-平面上の単位円(A)
 1+(a-iy)/(a+iy) :単位円(A)の中心をw-平面上の実軸上 u=1 へ移動(B)
 (1/2a)*{1+(a-iy)/(a+iy)} :(B)の w-平面のスケールを(1/2a)倍

(a-iy)/(a+iy) が単位円というのを知らないと、式変形すらできません。
    • good
    • 0
この回答へのお礼

(a-iy)/(a+iy)は単位円なのですか。。。
なかなか複素関数、簡単ではなさそうです。。。
これからも勉強していきます!
ありがとうございました!!

お礼日時:2007/07/12 21:03

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q複素数のw=1/zという式のについて

複素数z,wの間にw=1/z の関係があり、zは条件|z-1|≦1, z+z-≧2を同時に満たすものとする。(z-はzのバーです)
(1)zの表す(複素数平面上の)点の存在範囲を図示せよ
(2)wの表す点の存在範囲を図示せよ

(1)でzは中心1半径1の円の右半分が答えになりました。
そこで(2)なんですが、w=1/zからzの存在範囲をwに伝えるときに解答ではz=x+yi, w=X+Yi,とおいて実部虚部を見比べて何とか関係式をつくってそれを(1)で求めた軌跡の式に代入しているのですが、ややこしくてなかなか自分でできません。考えてみたんですが、z=r(cosθ+isinθ)とおくと、w=1/z=r(cosθ+isinθ)^-1=r(cos(-θ)+isin(-θ))とかけますよね?ここから視覚的に(1)で求めた図形からwの表す点の存在範囲を図示することはできないのでしょうか?また、できないならそれはなぜでしょうか?よろしくお願いします。

Aベストアンサー

>(1)でzは中心1半径1の円の右半分が答えになりました。
これは正しくて,
|z-1|≦1・・・(a) から中心1,半径1の円の周および内部(いわゆる円板)
z+z-≧2 ⇔ (z+z~)/2≧1 ⇔ Re(z)≧1・・・(b) から実部Re(z)≧1の部分(右半分)
ですね.ただし,例えばzの共役複素数はz~のように表すとします.
するとz=r(cosθ+isinθ)・・・(*)とおくと,0<=r<=1,-π/2<=θ<=π/2 の部分と表して十分です. (w^2=z となるwの範囲を・・・などとなると,一般角でないとマズイでしょうが,ここではそういう話ではないので,黙って先に進みます.)
ただし,この(*)は使わない方針で解きます.

[(2)の解答]
(前半)
w=1/z (≠0) よりz≠0なので,
z=1/w を|z-1|≦1に代入,
|z-1|≦1 
⇔|1/w -1|≦1
⇔|1-w|≦|w| [w≠0より,両辺に|w|>0 を掛けた]
⇔|w-1|≦|w|・・・(c)
ここから ⇔|w-1|^2≦|w|^2 ⇔ (w-1)(w~-1)≦ww~ ⇔ w+w~≧1 ⇔ Re(w)≧1/2
ともっていっても出来ますが,
(c)⇔|w-1|≦|w-0| から,wは点1からの距離よりも点0からの距離の方が大きいかまたは等しい任意の点なので,2点0,1を結ぶ線分の垂直二等分線 Re(w)=1/2 またはそれの点0から遠い方(右側)で, 結局 Re(w)≧1/2

(後半)
同様に(w≠0なので) 第2式に z=1/w を代入すると
z+z~≧2 
⇔1/w +(1/w)~≧2
⇔1/w +1/(w~)≧2
⇔(w+w~)/(ww~)≧2
⇔(w+w~)/|w|^2≧2
⇔(w+w~)≧2|w|^2 [w=1/z (≠0)より|w|^2>0を両辺に掛けても同値]
⇔(1/2)(w+w~)≧|w|^2
⇔(中略)⇔|w-1/2|^2≦(1/2)^2
⇔|w-1/2|≦1/2
つまり 中心1/2で半径1/2の円の周および内部

以上より
|w-1/2|≦1/2 かつ Re(w)≧1/2 の部分(全体)
[別表現]中心1/2で半径1/2の円の周および内部のうち,実部が1/2以上の部分(右側で境界を含む部分)

[別解]
最初からw=1/zは『反転』なので,大学生以上なら一般論からあっさり周上の数点の行き先と内部は内部にうつされるということから結論を得てよいでしょうが,それ以外だとこのやり方では致命的な減点かも.

ミスタイプも含め何か不都合があったらクレームをつけて下さい.

>(1)でzは中心1半径1の円の右半分が答えになりました。
これは正しくて,
|z-1|≦1・・・(a) から中心1,半径1の円の周および内部(いわゆる円板)
z+z-≧2 ⇔ (z+z~)/2≧1 ⇔ Re(z)≧1・・・(b) から実部Re(z)≧1の部分(右半分)
ですね.ただし,例えばzの共役複素数はz~のように表すとします.
するとz=r(cosθ+isinθ)・・・(*)とおくと,0<=r<=1,-π/2<=θ<=π/2 の部分と表して十分です. (w^2=z となるwの範囲を・・・などとなると,一般角でないとマズイでしょうが,ここではそういう話ではない...続きを読む

Q複素解析で、極の位数の求め方

無限積分の値を求めるのに留数定理を使用するので、その際留数を求めることになりますが、
http://www.f-denshi.com/000TokiwaJPN/12cmplx/100cmp.html
によると、留数を求めるのに極の位数が必要だと書いています。

極は分数関数の分母を0にするような変数の値だと習いましたが、位数の求め方がわかりません。位数はどのようにして求めることができるのでしょうか?

Aベストアンサー

>極は分数関数の分母を0にするような変数の値だと習いましたが、
>位数の求め方がわかりません。
極がaのとき、分母をq(z)とおくと、q(z)を因数分解したとき
(z-a)^m
を因数として持つとき(q(z)=0がm重解を持つとき)
mを位数といいます。
位数mを求めるにはz=aが何重解かを求めればそれがmになります。

Qテイラー展開とローラン展開

テイラー展開とローラン展開の問題の解き方がよく分かりません。どちらにもマクローリン展開を用いるようなのですが・・・。例えば、z=-iを中心に関数f(z)=1/zをテイラー展開及びローラン展開するにはどうすれば良いのでしょうか?式をできるだけ詳しく説明して頂けると助かります。

Aベストアンサー

遅くなったかもしれませんが、補足の説明です。

>z=aにおいて正則な関数f(z)についてはテイラー展開という考え方でいいのでしょうか?

先に点z=aを考えるのではなく、領域から考えたほうがよいのでは?
関数f(z)がどの領域(z平面や与えらている領域D)で正則なのかという風に・・・。

>関数f(x)がz=aで極もしくは真性特異点をもつ場合にはローラン展開、という考え方でいいのでしょうか?

除去可能な孤立特異点、(p位の)極、孤立真性特異点はローラン展開した後で判別するものですから、ローラン展開も領域を意識したほうがいいと思います。
例えば、環状領域は0<|z|<+∞、0<|z-1|<1などと表されます。

>また、ローラン展開をする際は必ずマクローリン展開(u=z-aとおく等してz=0でテイラー展開)を用いるのでしょうか?

必ずしもそうとは言えません。与えられた関数によるでしょう。
例として

f(z)={(z^2)-1}/{(z+1)(2z-1)}の0<|z-(1/2)|<(1/2)
でのローラン展開を求めると、
f(z)=(z-1)/(2z-1)=(1/2)*{1-1/(2z-1)}=(1/2)-(1/4)*{1/(z-1/2)}
従って、f(z)=(1/2)-(1/4)*(z-(1/2))^(-1)

というように、テイラー展開を用いなくてもローラン展開が出来るものもあります。
(途中の計算は確認してください。)

また、領域を意識する必要性は#1のローラン展開の例で領域を0<|z-1|<1
に変えると当然一意性があるので違ったローラン展開になります。(g(z)=-1/zとおいて計算する。)

自分の授業の話ですが複素解析学ではマクローリン展開と言わなかったような気がします。(教授の好みかもしれません。)

それでは頑張って下さい。

遅くなったかもしれませんが、補足の説明です。

>z=aにおいて正則な関数f(z)についてはテイラー展開という考え方でいいのでしょうか?

先に点z=aを考えるのではなく、領域から考えたほうがよいのでは?
関数f(z)がどの領域(z平面や与えらている領域D)で正則なのかという風に・・・。

>関数f(x)がz=aで極もしくは真性特異点をもつ場合にはローラン展開、という考え方でいいのでしょうか?

除去可能な孤立特異点、(p位の)極、孤立真性特異点はローラン展開した後で判別するものですから、ロ...続きを読む

Qデルタ関数をラプラス変換すると何故1になるか?

デルタ関数をラプラス変換すると何故1になるか?
わかり易く説明お願いします。

デルタ関数はt=0の時、∞になり
      t≠0の時、0である
のは理解しているのですが、どうもラプラス変換して何故1になるかが分かりません。
そういうものとして丸暗記するべきことなのでしょうか?

Aベストアンサー

実は0になるとはいえないのです

δ関数というのは
例えば
fε(t)=exp(-t^2/2/ε^2)/√(2・π)/ε
のように質のいい関数において
εを0に近づけたときの極限の関数なのです
実際には極限ではなく今考えている問題において十分0に近くすればいいでしょう
fε(t)でなくても質のいい関数ならば代わりの関数を持ってきてもεに相当するパラメータを0近くにすればほぼ同じ結果が得られるのです
シュワルツは形式的に矛盾しないようにδ関数を定義しましたが作為的なので彼の理論には問題があります
この点において佐藤さんの方が人気が有るようです

片側ラプラス変換では積分範囲が0から無限大なので1とするには無理があります
しかし両側ラプラス変換ならば1となるのです
だから片側ラプラス変換を使うのを止めたほうがいいでしょう

∫[-∞,∞]dt・δ(t)・exp(-st)=1
ですが
∫[0,∞]dt・δ(t)・exp(-st)=0,1/2,1,?
ですから
もし先のガウシアンを採用した場合は1/2です

Q大学の複素数の問題なんですがわからないので教えてください。

大学の複素数の問題なんですがわからないので教えてください。
初めて書き込みする者です。よろしくお願いします。

次の関係を満足するZの範囲をいえ.(Z=X+Yi)
|Z-2|+|Z+2|=6

という問題です。途中の式もお願いします。

Aベストアンサー

xy座標平面で言うと
A(2,0)、B(-2,0)、Zの座標をP(x,y)とすると
|Z-2|+|Z+2|=6
は AP+BP=6
ということを表します。
これを式で書くと
√{(x-2)^2+y^2}+√{(x+2)^2+y^2}=6
2乗して
2{x^2+4+y^2}+2√{(x-2)^2+y^2}{(x+2)^2+y^2}=36
√{(x-2)^2+y^2}{(x+2)^2+y^2}=14-x^2-y^2
2乗して
(x^2-4)^2+y^4+2(x^2+4)y^2=(14-x^2-y^2)^2
整理すると

5x^2+9y^2=45

(x/3)^2+(y/√5)^2=1

と楕円になります。

複素平面では
長直径(-3)~(3),短直径(i√5)~(-i√5),中心が原点の楕円です。

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Q磁場と磁束密度の違い

磁場Hと磁束密度Bの違いとはなんですか?
使い分けは出来るのですがよくわかっていません。
具体的に教えていただけないでしょうか?

Aベストアンサー

追加です。

「EとH,DとB」という本が共立出版・物理ワンポイントシリーズにありました。
1冊の本になるくらいBとHの区別は難しい,というか私も理解に苦労した記憶があります。

B=μH 磁束密度B[Wb/m^2],透磁率μ[H/m],磁界H[A/m]
D=εE 電束密度D[C/m^2],誘電率ε[F/m],電界E[V/m]
J=σE 電流密度J[A/m^2],導電率σ[S/m],電界E[V/m]

これらの式は数学的には同じ形になり,ポアソン方程式の境界条件なども同じ形になります。

私もしばらく,B,H,D,Eという物理量の違いが理解できず,悶々としていました。
これらの中で
「導電率σの物質に電界Eをかけると,電流密度Jで電流が流れる」という,
微視的なオームの法則が一番イメージがわきやすかったです。

すなわち,
EやHは流れを作り出す「界」の大きさで,長さあたりの傾斜
J,B,Dはできた流れを,タバとしてみた「束」の面積あたりの密度
というイメージです。

EやHに,平行な長さをかけて積分した起電力[V],起磁力[A]
BやDやJに,垂直な断面積をかけて積分した,磁束[Wb],電束[C],電流束[A]

これらは同じ性質を持つことになります。このうち電圧(起電力),電流は電気回路の考え方に従い,
直列や並列に接続したときの性質がよく分かっています。

これを手がかりにして,

磁束や電束は流れる量で,電流と同じく「束」として一続きの糸のようにつながっている。
磁界や電界は流れを作るポテンシャル勾配「界」で,ぐるりと一周線積分すると起磁力,起電力になる,

というイメージがつかめました。

追加です。

「EとH,DとB」という本が共立出版・物理ワンポイントシリーズにありました。
1冊の本になるくらいBとHの区別は難しい,というか私も理解に苦労した記憶があります。

B=μH 磁束密度B[Wb/m^2],透磁率μ[H/m],磁界H[A/m]
D=εE 電束密度D[C/m^2],誘電率ε[F/m],電界E[V/m]
J=σE 電流密度J[A/m^2],導電率σ[S/m],電界E[V/m]

これらの式は数学的には同じ形になり,ポアソン方程式の境界条件なども同じ形になります。

私もしばらく,B,H,D,Eという物理量の違いが理解できず,悶々としていました...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qエントロピー変化の計算

完全気体の圧力がPiからPfまで等温変化するときのエントロピー変化を計算せよ、という問題があります。しかしどのように計算すれば良いのか分かりません。この答えはΔS=nR*ln(Pi/Pf)だそうです。

以下は自分の考えです。
dS=dq/T と表されるのでΔS=∫(dq/T)=q/T (積分範囲はi→f)となり、熱を求めようと思いました。
等温変化なのでΔU(内部エネルギー変化)=q+w=0 (q:熱 w:仕事)が成り立ち、q=-wとなり、仕事を求めばいいと思うのですがどのようにwを求めていいのか分かりません。圧力一定で、体積が変化する場合なら求められるのですが・・・。

どなたかお分かりになる方、教えていただければ幸いです。

Aベストアンサー

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数だからです)
そして今dT=0より、結局pdV=-Vdp 状態方程式でVをpであらわし
よって、∫dS=∫pdV/T=∫-Vdp/T=∫-(nR/p)dp
=-nR[logp](p=pi~pf)
=nRlog(pi/pf)

余談ですけど、なぜ可逆過程なのにエントロピー変化があるのかというと、ひとつは、断熱系と混同しがちだからです。dS≧dQ/Tというのが、一番基本的なものなのです。断熱系dQ=0の場合のみdS≧0となりエントロピー増大則になります。また
等温変化の可逆過程では、dS=dQ/Tと、=になりましたけど、
これを高熱源や低熱源を含めた全体の系に適用すると、全てを含めた全体は断熱系になっているから、
dQ=0より、エントロピー変化はありません。
質問の場合なら、一見エントロピーはΔS=nR*ln(Pi/Pf)
と増加しているようですが(膨張を過程),それは気体のエントロピーのみ考えているからであり、
完全気体が高熱源から準静的に熱量Qをもらっている
はずで、逆に言うと高熱源は熱量Qを失っています。
だから、高熱源はエントロピーQ/Tだけ失っているから
完全気体と高熱源をあわせた系のエントロピー変化は
-Q/T+nR*ln(Pi/Pf)=0となって、結局全体で考えれば
エントロピー変化はありません。カルノーサイクル
の例も一応挙げとくと、
高熱源のエントロピー変化量:-Q/T1
低熱源〃:(Q-W)/T2
ですけど、カルノーサイクルの効率は1-(T2/T1)より
W=Q(1-T2/T1)∴低熱源:Q/T1となって、高熱源と低熱源
をあわせた系全体のエントロピーの変化はありません。

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数...続きを読む

Qベクトル解析の面積分

ベクトル解析学の面積分でわからないところがあります。
面積分習いたてであまりわからないのですが、
S:円柱面 y^2+z^2=4
0≦x≦1
z≧0
のとき、次の面積分を求めよ。
∫_[S](xi+yj+zk)・dS

この問題なのですが、
z^2=4-y^2≧0
y^2≧4
-2≦y≦2
くらいまで少し考えてみたのですが、すぐに行き詰まってしまいました。
この後はどうすればいいのでしょうか。
今まではこの後に
z=f(x,y)
とかになり、fxやfyを出せたのですぐにできたのですが、zがxで表現できないので…
よろしくお願いします。

Aベストアンサー

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r * cosθ, r * sinθ)・(0, cosθ, sinθ) * |dS|
= (r * (cosθ)^2 + r * (sinθ)^2) * r * dθ * dx
= r^2 * dθ * dx.

これを 0≦θ≦π,0≦x≦1 の範囲で積分すると,円柱側面での面積分は,
I1 = r^2 * π * 1 = πr^2.


■円柱の底面 (x=1)

・外向きの単位法線ベクトル:n=(1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(1, 0, 0) * |dS|
= x * |dS|
= |dS|.

これを円柱の底面にわたって積分すると,底面積そのものなので,
I2 = πr^2 / 2.


■円柱の底面 (x=0)

・外向きの単位法線ベクトル:n=(-1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(-1, 0, 0) * |dS|
= -x * |dS|
= 0.

∴ I3 = 0.


■カマボコの底面 (z=0)

・外向きの単位法線ベクトル:n=(0,0,-1).

∴ (x, y, z)・dS
= (x, y, z)・(0, 0, -1) * |dS|
= -z * |dS|
= 0.

∴ I4 = 0.

したがって全体の面積分は I1+I2+I3+I4 = (3/2)πr^2 = 6π.

答え合ってますか?

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング