熱力学の基礎の基礎です。でもいまいち分かりません。
反応エンタルピー変化ΔHを算出してます。温度は各温度によって違います。
分からないのはエンタルピーは等圧での値といいますが、例えば反応器で体積一定で圧力を上げた時。つまり0.1MPaのΔHと0.8MPaのΔHは違うのでしょうか?
反応は同じです。自分は圧力変化は平衡定数に影響して、ΔGかΔSを変化させると思っていましたが・・・これもいまいち分かりません。
教えて下さい。

このQ&Aに関連する最新のQ&A

A 回答 (22件中21~22件)

この辺はわかりにくですよね。


ピントはずれのアドバイスになっていたらごめんなさい。

>0.1MPa, 0.8MPaのそれぞれの圧力下で同じ反応をさせた
場合の反応エンタルピー変化ΔHの比較・・・ΔHは温度の関数だから、変化しないのでしょうか?

エンタルピー(H)は対象とする系に含まれる物質の種類と量, 相の状態, 温度, 圧力から決まります、と簡単に考えてください。
すなわち圧力依存性があります。圧力が変わればHも変わります。
これは実在気体、液体、固体に共通です。
ところが例外がいます。理想気体の場合 (PV=RTが成立する場合)、
Hの圧力依存性は無くそれ以外の項目でHが決まります。
もう少し言うと混合エンタルピーも"0"なので実質理想気体のHは温度と対象の系に含まれる各成分の量のみで決まります。
実在物質のHに対する圧力変化の影響度は計算がちょっと面倒なケースが多いのでテキストの問題はよく理想気体として扱えることに
しています。
一方、エンタルピー変化量 (ΔH)は最初の状態のH1, 最後の状態のH2がそれぞれ求まれば、ΔH=H2-H1。
ご質問は反応エンタルピー変化でした。反応が原系,生成系共に理想気体として扱えるとするならば、0.1MPa定圧, 0.8MPa定圧, 0.1-->0.8MPa
昇圧されようと圧力は無関係、反応温度がすべて同じなら反応エンタルピー(ΔH)は同じはずです。H1, H2が圧力によって変わらないので。
原系、生成系の各成分の標準生成エンタルピー差と、標準状態温度から反応温度までに持っていくために必要な顕熱差の和が反応エンタルピー変化です。

>自分は圧力変化は平衡定数に影響して、ΔGかΔSを変化させると思っていましたが・・・・
反応平衡定数も大雑把に温度のみの関数と考えられます。反応温度一定で反応圧力が変わった場合、影響を受けるのは平衡転化率です。反応平衡定数は変わらないと考えて差し支えないと思います。

参考URLのテキストはこの辺の理解を深めるのにとても役立ちました。
ぜひご一読を。

参考URL:http://www.scej.org/jp_html/journal/book/ccc/ccc …
    • good
    • 0
この回答へのお礼

通常は理想気体として考えていいのでしょうか?
通常の反応器とか設計する場合は理想気体としてよいのでしょうか?
理想気体でない場合というのはどういう場合でしょうか?

お礼日時:2007/07/24 21:18

>例えば反応器で体積一定で圧力を上げた時。

つまり0.1MPaのΔHと0.8MPaのΔHは違うのでしょうか?

反応器の体積一定で反応前0.1MPa、反応後0.8MPaに圧力が上昇した、
ということでしょうか?それとも0.1MPa, 0.8MPaのそれぞれの圧力下
で同じ反応をさせた場合の反応エンタルピー変化ΔHの比較でしょうか?

この回答への補足

0.1MPa, 0.8MPaのそれぞれの圧力下で同じ反応をさせた
場合の反応エンタルピー変化ΔHの比較です。
昇圧したわけではありません。
こうなるとΔHは温度の関数だから、変化しないのでしょうか?

それとついでに体積一定で反応前0.1MPa、反応後0.8MPaに圧力
が上昇した場合もΔHはどうなってしまうのか教えて下さい。

補足日時:2007/07/23 19:41
    • good
    • 0
この回答へのお礼

それとも0.1MPa, 0.8MPaのそれぞれの圧力下
で同じ反応をさせた場合の反応エンタルピー変化ΔH
の比較です。
昇圧したわけではありません。
こうなるとΔHは温度の関数だから、変化しないのでしょうか?

それとついでに体積一定で反応前0.1MPa、反応後0.8MPaに圧力
が上昇した場合もΔHはどうなってしまうのか教えて下さい。

お礼日時:2007/07/23 19:40

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q水の蒸発熱(潜熱)に圧力依存性はありますか?

初心者のタイトル通りの質問です。蒸発熱に温度依存性があることは知っていますが、接している気体の圧力によっても変わるのでしょうか? 私は温度で変わるのだったら何となく圧力でも変わるのではないかと思います。
どこかにすでに質問があるかとこのサイトでも調べたのですが解りません。実際はどちらなのでしょうか。もしご存知の方がおられましたらご回答かURL等をご紹介いただけないでしょうか。よろしくお願い申し上げます。

Aベストアンサー

No3です。あとから考えて”温度固定で水の分圧は上がるわけでもなさそうなので”ちょっと余計でした。理想気体なら部分モルエンタルピーは単一の場合の1モルあたりのエンタルピーに同じで、(∂H/∂P)(_T)=0で要するに理想気体である限りHは圧によらない、ということですね。また、液体の方は空気で加圧したとしても純粋の水のモル当りのエンタルピーを考えればよろしいですね。こちらはh+V≠0になるはずでHが圧により変化するのですが、計算してみると(∂H/∂P)(_T)=v(1-αT)(1-κP)となります。α熱膨張係数、κは圧縮係数です。温度が低ければ(∂H/∂P)(_T)=v(1-κP)ということです。

Q標準自由エネルギー変化について教えてください。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-AとするとAが大きいほど反応は進みやすのでしょうか?(これ本当に分かりません・・)

自由エネルギー変化ΔGについてです
ΔG=ΔG゜+RTlnK
aA+bB⇔cC+dDと言う反応ではモル分圧平衡定数とするとK=([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)
です。
質問4:そもそもΔGとは何を表現しているのですか?平衡だとΔG=0となる。これはどういうこと?
質問5:ΔG゜=-RTlnKですが、通常ΔGというとみんなこの方法で算出してしまいます。ここで標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGをごっちゃにするとエライ事になりそうですが・・・
質問6:ΔG=ΔG゜+RTln([P_C]^c・[P_D])^d÷([P_A]^a・[P_B]^b)でよく25℃、1atmの濃度や分圧を入れてΔGを出してますが、これはどう解釈したらよいのでしょうか?その濃度や分圧のときの自由エネルギーということ?でもそれなら25℃、1atmの生成ΔGfから算出したΔG゜とΔGが同じにならないとおかしくありませんか?
質問:そもそも上記の考え方にどこかおかしいから悩んでいるので、指摘していただけたら幸いです。

お願いします。
基礎中の基礎です。しかし混乱してます
標準自由エネルギー変化ΔG゜と自由エネルギー変化ΔGの違いが分かりません。

まず標準自由エネルギー変化ですが
aA+bB⇔cC+dDと言う反応があると
ΔG゜=各物質の生成ΔGfの合計=[c×ΔGfC]+[d×ΔGfD]-[a×ΔGfA]-[b×ΔGfB]だと思うのですが・・・
質問1:ΔG゜<0ですと反応は右に進まないはず。でもなぜ?
質問2:ΔG゜とはそもそも何を表しているのですか?(僕自身の薄学では生成側にそれだけエネルギーが偏っている?)
質問3:ΔG゜=-Aとすると...続きを読む

Aベストアンサー

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べるのは大変なので
変化量を指標に用いていることは同じですが、標準生成自由エネルギーは、すべての元素が標準状態にあるとき自由エネルギーを0として、それらの単体から生成される化合物を上記の式を使って計算した物です。

反応が自発的に進むためにはΔGがマイナスでなければなりません。
ΔGは自由エネルギー変化です。
標準生成自由エネルギーΔG゜とは違います。
-RTlnK=ΔG゜ という関係から ΔG゜が負の時はKが1よりも大きい事を意味し、正の時には、その反応が進まないということではなくKが1よりも小さいことだけを意味します。
ΔG゜が大きな正の値をとるとKは著しく小さくなり、平衡点は原系の方に極端に片寄ることを意味しています。
ΔG゜=0ならばK=1ということです。

>平衡になったときのモル分率やモル濃度を入れると、当然RTlnKは
>-ΔG゜と同じになるはずですよね?

ΔG=ΔG゜+RTlnKですよね。平衡状態ではΔG=0なので、
RTlnK=-ΔG゜ または -RTlnK=ΔG゜で間違いないと思います。

>一般的にΔG゜って各物質の生成ΔGfの合計から算出するじゃないですか?

違うと思います。
ΔG゜=ΣΔGf゜(生成物)- ΣΔGf゜(反応物) だと思います。

標準生成自由エネルギーと自由エネルギー変化を混同しては行けません。
自由エネルギーやエンタルピーの絶対値を調べる...続きを読む

Qエントロピー変化の計算

完全気体の圧力がPiからPfまで等温変化するときのエントロピー変化を計算せよ、という問題があります。しかしどのように計算すれば良いのか分かりません。この答えはΔS=nR*ln(Pi/Pf)だそうです。

以下は自分の考えです。
dS=dq/T と表されるのでΔS=∫(dq/T)=q/T (積分範囲はi→f)となり、熱を求めようと思いました。
等温変化なのでΔU(内部エネルギー変化)=q+w=0 (q:熱 w:仕事)が成り立ち、q=-wとなり、仕事を求めばいいと思うのですがどのようにwを求めていいのか分かりません。圧力一定で、体積が変化する場合なら求められるのですが・・・。

どなたかお分かりになる方、教えていただければ幸いです。

Aベストアンサー

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数だからです)
そして今dT=0より、結局pdV=-Vdp 状態方程式でVをpであらわし
よって、∫dS=∫pdV/T=∫-Vdp/T=∫-(nR/p)dp
=-nR[logp](p=pi~pf)
=nRlog(pi/pf)

余談ですけど、なぜ可逆過程なのにエントロピー変化があるのかというと、ひとつは、断熱系と混同しがちだからです。dS≧dQ/Tというのが、一番基本的なものなのです。断熱系dQ=0の場合のみdS≧0となりエントロピー増大則になります。また
等温変化の可逆過程では、dS=dQ/Tと、=になりましたけど、
これを高熱源や低熱源を含めた全体の系に適用すると、全てを含めた全体は断熱系になっているから、
dQ=0より、エントロピー変化はありません。
質問の場合なら、一見エントロピーはΔS=nR*ln(Pi/Pf)
と増加しているようですが(膨張を過程),それは気体のエントロピーのみ考えているからであり、
完全気体が高熱源から準静的に熱量Qをもらっている
はずで、逆に言うと高熱源は熱量Qを失っています。
だから、高熱源はエントロピーQ/Tだけ失っているから
完全気体と高熱源をあわせた系のエントロピー変化は
-Q/T+nR*ln(Pi/Pf)=0となって、結局全体で考えれば
エントロピー変化はありません。カルノーサイクル
の例も一応挙げとくと、
高熱源のエントロピー変化量:-Q/T1
低熱源〃:(Q-W)/T2
ですけど、カルノーサイクルの効率は1-(T2/T1)より
W=Q(1-T2/T1)∴低熱源:Q/T1となって、高熱源と低熱源
をあわせた系全体のエントロピーの変化はありません。

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数...続きを読む

Q平衡定数の単位について

平衡時における反応物と生成物の濃度のデイメンジョンが同じ場合
(例えば酢酸+エタノール=酢酸エチル+水など)はその平衡定数の単位は無次元になり、単位はありません。
違う場合(例えば四酸化二窒素の分解による二酸化窒素の生成など)は平衡定数の単位がでてきます。
平衡定数を求めた時、単位があったりなかったりすることは
どういうことなのか教えて下さい。

Aベストアンサー

質問者さんがどの程度熱力学をご承知か存じませんが、もともと平衡定数は反応のギブスの自由エネルギー変化をΔG°と書いたとき、
-ΔG°=RTlnK(lnは自然対数)...(1)
で定義されています。対数関数ですから本来はKは無次元の数が入るべきで、モル分率xiをつかいます。
(1)には原系と生成系の化学ポテンシャルが等しい、ということが含まれ、原系、生成系の化学ポテンシャルの表示でi番目の成分について
μi=μi°+RT ln(xi)(xi;iのモル分率)...(2)
と書けることに由来しています。
これを
μi=μi°+RT ln(Pi)
と書いたりもしますが、この場合のμ°の中に-RTlnP0(P0は基準となる圧。たとえば1気圧=101.3 kPa)が隠れています。

分圧で組成を入れると質問者さんのような例では平衡定数に圧力の単位が残ります。すなわちモル分率の平衡定数にP(全圧)がかかった数字になります。よって圧平衡定数をKp、モル分率による平衡定数をKとしますと
lnKp=lnKP=lnK+lnP分とずれが生じます。しかし化学ポテンシャルの数値などを問題にしない場合は圧平衡定数が使えます。
aをN2O4、bをNO2、それぞれの分圧をPa、Pb、モル分率をxa, xbとしますと、xa=Pa/P, xb=Pb/Pとなります。
Kp=Pb^2/Pa=P(Pb/P)^2/(Pa/P)=Pxb^2/xa=KP...(3)
となります。
たとえばある温度での圧平衡定数Kpをあたえ、aとbの分圧を決めるという問題の場合、
Pb^2/Pa=Pb^2/(P-Pb)=Kp...(4)
とし、
Pb={-Kp+√(Kp^2+4KpP)}/2...(5)
となります。
これをモル分率の計算でやれば、
xb^2/xa=xb^2/(1-xb)=K...(6)
より、
xb={-K+√(K^2+4K)}/2...(7)
となります。(7)の両辺に全圧Pをかけてやると
Pxb=Pb=P{-K+√(K^2+4K)}/2={-KP+√{P^2(K^2+4K)}}/2={-KP+√((KP)^2+4(KP)P)}/2={-Kp+√(Kp^2+4KpP)}/2...(8)
となります。これは(5)と矛盾しません。

質問者さんがどの程度熱力学をご承知か存じませんが、もともと平衡定数は反応のギブスの自由エネルギー変化をΔG°と書いたとき、
-ΔG°=RTlnK(lnは自然対数)...(1)
で定義されています。対数関数ですから本来はKは無次元の数が入るべきで、モル分率xiをつかいます。
(1)には原系と生成系の化学ポテンシャルが等しい、ということが含まれ、原系、生成系の化学ポテンシャルの表示でi番目の成分について
μi=μi°+RT ln(xi)(xi;iのモル分率)...(2)
と書けることに由来しています。
これを
μi=μi°+RT ln(Pi)
と...続きを読む

Qこの場合のギブスエネルギーの変化量を教えてください

大学二年生の化学熱力学の教科を学んでいるのですが。。。
全くわからない問題があります!
室温298K、0.022molの理想気体が圧力が17.0MPaから100KPaに変化した。
この過程でのギブスエネルギーの変化量はいくらか。
という問題です。
物質量はどこで使うのですか?
計算過程もお願いします。
また、こういう問題は何を考えれば解けるのかアドバイスお願いします。

Aベストアンサー

ギブス自由エネルギー(G)の定義は
G = H - TS
H: エンタルピー (J)
S: エントロピー (J/K)
T: 環境温度 (K)

ギブス自由エネルギー変化量(ΔG)は
ΔG = ΔH - TΔS

エンタルピー,エントロピーは対象とする系の
1)温度
2)圧力
3)物質の相の数
4)各相での各成分量
が決まると計算できます。

言いかえると、上記1)2)3)4)のどれかが変化するとエンタルピー,エントロピー、そしてギブス自由エネルギーも変化します。

問題を上記1)2)3)4)に照らし合わせると、
1)温度は変化したと記述していないので一定
2)圧力は17MPaから100KPaに変化
3)相(気相、液相、固相)の数は理想気体が凝縮して液体になった、と記述していないので一定
4)各相での各成分量、この場合、気相の理想気体の種類が増えた減った、0.022molが増えた減ったと記述していないので一定

3)4)はちょっと強引なところありますが、幅広く題意を捉えるための説明です。

まずエンタルピー変化ΔHを計算します。
結論から言うとΔH = 0です。
理想気体1mol当たりのエンタルピーは温度変化した場合にのみ変化し、圧力により変化しません。
これは理想気体の状態式(PV=RT)とエンタルピー計算式(微分形で与えられます)から導出されます。
圧力は変化していますが温度が変化していないのでΔH = 0。

次にエントロピー変化ΔSを計算します。
理想気体1mol当たりのエントロピーは温度変化、圧力変化で変化します。
温度変化は無いので温度変化相当のΔSは0。
圧力変化相当のΔSは理想気体の状態式(PV=RT)とエントロピー計算式(これも微分形)から導出され
-nR*ln(P1/P0)・・・微分形を圧力P0からP1まで積分した結果
となります。

n 理想気体mol数: 0.022 (mol)
R 理想気体定数: 8.31 (J/mol.K)
P0 変化前の圧力: 17MPa = 17000KPa
P1 変化後の圧力: 100KPa

圧力変化相当のΔS = - 0.022 x 8.31 x ln(100/17000) = 0.934 (J/K)

まとめますと

ΔG = ΔH - TΔS
ΔH = 0
T 環境温度: 298 (K)
ΔS = 0.934 (J/K)
ΔG = 0 - 298 x 0.934 = - 278.3 (J)

まどろっこしい説明になりましたが理想気体の圧力変化に伴うギブス自由エネルギー変化量(ΔG)は
ΔG = nRT*ln(P1/P0)
でさっと計算できます。

ギブス自由エネルギー(G)の定義は
G = H - TS
H: エンタルピー (J)
S: エントロピー (J/K)
T: 環境温度 (K)

ギブス自由エネルギー変化量(ΔG)は
ΔG = ΔH - TΔS

エンタルピー,エントロピーは対象とする系の
1)温度
2)圧力
3)物質の相の数
4)各相での各成分量
が決まると計算できます。

言いかえると、上記1)2)3)4)のどれかが変化するとエンタルピー,エントロピー、そしてギブス自由エネルギーも変化します。

問題を上記1)2)3)4)に照らし合わせると、
1)温度は変化したと記述していないので一定
2)圧力は17MPaか...続きを読む

Q内部エネルギーとエンタルピーの変化量

理想気体1molが1bar下で273Kから373Kまで温度変化した時のΔUおよびΔHを求めよ。ただし、定積モル熱容量Cv=(3/2)R、定圧モル熱容量Cp=(5/2)R。
また、ΔH-ΔUは何に対応する物理量であるか?

このような問題があるのですが、どのような式で解いていけばよいのでしょうか?
ΔU=(5/2)R(373-273)では間違ってますでしょうか?

よろしくお願いいたします。

Aベストアンサー

#1です。お礼について、
>1bar下でとありますが、ΔU=(3/2)R*ΔTになるってことですか?

理想気体だから。

この問題を普通に考えると、定圧変化だから、
ΔH = CpΔT = (5/2)R*ΔT
R = 8.31447 J /(mol*K)
で、
ΔH = 2078J/mol

一方、
ΔH = ΔU + pΔV
ΔU = ΔH - pΔV
ΔH - ΔU = pΔV

pΔV これはなんだか考えてもらうとして、

pΔVがわかればΔUが計算できる。
ΔV = V0 * p0/p * (T-T0)/T0
V0:理想気体のモル体積=2.241*10^(-3)m^3/mol
p0:標準状態の圧力=1.013*10^5Pa
T0:始めの温度=273K

p = 1bar = 1.000*10^5Pa
T=373K

ΔV = 2.241*10^(-3)m^3/mol *(1.013*10^5Pa/1.000*10^5Pa) * (373K-273K)/273K
pΔV = 831.6J/mol

だから、
ΔU = ΔH - pΔV = 2078J/mol - 831.6J/mol = 1246.4J/mol

ということになる。

ところで、
理想気体だから、

pΔV = RΔT = 8.31447 J /(mol*K) * (373K-273K) = 831.4J/mol
ΔU = Cv*ΔT = 3/2*R*(T-T0)=1247J/mol

の方がずっとらくだね。

#1です。お礼について、
>1bar下でとありますが、ΔU=(3/2)R*ΔTになるってことですか?

理想気体だから。

この問題を普通に考えると、定圧変化だから、
ΔH = CpΔT = (5/2)R*ΔT
R = 8.31447 J /(mol*K)
で、
ΔH = 2078J/mol

一方、
ΔH = ΔU + pΔV
ΔU = ΔH - pΔV
ΔH - ΔU = pΔV

pΔV これはなんだか考えてもらうとして、

pΔVがわかればΔUが計算できる。
ΔV = V0 * p0/p * (T-T0)/T0
V0:理想気体のモル体積=2.241*10^(-3)m^3/mol
p0:標準状態の圧力=1.013*10^5Pa
T0:始めの温度=273K
...続きを読む

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

QVan't hoffプロットって?

van't hoffプロットって、何を表すグラフなのですか?
確か横軸は温度の逆数で縦軸はlnkと書いてあったのですが、
何を示したい、もしくは、化学的にどんな意義があるのか教えて下さい。

Aベストアンサー

 回答の前に確認させてください。お知りになりたいグラフは「横軸が温度の逆数」で「縦軸が ln(k)(大文字のK)」のものですね。もし,「縦軸が ln(k)(小文字のk)」でしたら,Organomets さんがお書きの様に Arrhenius プロットです。Arrhenius プロットでしたら,ここでも何度か質問に出ていますのでトップページ(↓)で検索してみてください。

 で,van't Hoff プロットですが,このもの自身は見付からなかったのですが,「化学辞典」(東京化学同人)に van't Hoff equation (ファントホッフの式)として,次の2式が出てきます。

  d( ln(Kp) )/dT = ΔH/(RT^2)
  d( ln(Kc) )/dT = ΔU/(RT^2)
    Kp:圧平衡定数,Kc:濃度平衡定数,
    R:気体定数,T:絶対温度,
    ΔH:定圧反応熱,ΔU:定容反応熱

 これらの式は『平衡定数の温度変化を示すと同時に,反応の平衡定数と反応熱を結びつける関係式』です。

 ここで,各式をそれぞれ積分すると次の2式が得られます。

  ln(Kp) = C - (ΔH/R)(1/T)
  ln(Kc) = C' - (ΔU/R)(1/T)

 したがって,お書きの van't Hoff プロットとは,「縦軸に ln(Kp) 又は ln(Kc)」を「横軸に温度の逆数(1/T)」をとってプロッとしたものだと思います。そうだとすると,プロットは直線になり,その傾きから定圧反応熱(ΔH)や定容反応熱(ΔU)と言った熱力学パラメーターが得られます。

参考URL:http://www.okweb.ne.jp/index.php3

 回答の前に確認させてください。お知りになりたいグラフは「横軸が温度の逆数」で「縦軸が ln(k)(大文字のK)」のものですね。もし,「縦軸が ln(k)(小文字のk)」でしたら,Organomets さんがお書きの様に Arrhenius プロットです。Arrhenius プロットでしたら,ここでも何度か質問に出ていますのでトップページ(↓)で検索してみてください。

 で,van't Hoff プロットですが,このもの自身は見付からなかったのですが,「化学辞典」(東京化学同人)に van't Hoff equation (ファントホッフの式)...続きを読む

Q転化率

転化率の定義を教えてください。

Aベストアンサー

styrenさん、こんばんは。

参考URLに、大変面白い例が載っていました。

「新入生100人(原料)が入学し、1年後に、卒業試験がある(反応器)。
 合格者は、卒業(生成物)。
 不合格者(未反応物)は、在籍する(リサイクルにまわされる)」

このとき、
 卒業試験の合格率=(1回転化率)

のようです。
このときの、反応器に入れられる量=原料+リサイクル

なので、合格率は、

(生成物)÷(原料+リサイクル)×100=1回転化率

のようにかけると思います。
ご参考になればうれしいです。


人気Q&Aランキング

おすすめ情報