痔になりやすい生活習慣とは?

中性子線は様々な分析に利用されていますが、その中の一つにブラッグの反射条件を利用した格子定数測定などの結晶構造解析があります。

中性子線は、その透過能を利用して局所歪のその場観察など、特殊な利用方法で大きなメリットがあるということは分かります。しかし、単に格子定数や相比を求めるだけであれば、X線回折のほうがはるかに容易に利用できるのでわざわざ中性子線を用いる必要性は感じられません。

格子定数測定などの一般的な構造解析に用いる場合、X線回折と比較して中性子回折のメリットはなにかあるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

格子定数の測定には、X線の方がいいでしょう。

構造解析とは原子座標などのパラメータを求めることに使う言葉で、格子定数測定とは意味が違うと思います。

中性子線は、原子座標や磁気状態を求めるときに、X線とは違った知見が得られるため使われます。また中性子は原子核、X線は電子に反応します。

X線回折は原子番号の大きい原子ほど、回折強度の寄与が大きくなります。すなわち銀と酸素の化合物の場合、銀に由来する強度が強くなるため、酸素のパラメータは軽視されがちです。原子座標も電子雲には広がりがあるため、あいまいになりがちです。

中性子線回折は、水素に大きな回折強度があります。また磁気モーメントの測定も可能です。原子核は電子に比べれば点なので、原子座標も求めやすいです。測定は大変ですが、上記の優位点があるため使われます。
    • good
    • 3
この回答へのお礼

ご回答ありがとうございました。

返信が遅くなってしまいすいませんでした。

お礼日時:2008/01/05 19:07

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

QX線のKαって何を意味するのでしょう?

タイトルのまんまですが、XRD、XPSなどで使われる特性X線のCu-Kα線、Mg-Kα線のKαってなにを意味するものなのでしょうか?
ちょっと気になった程度のことなので、ご覧のとおり困り度は1ですが、回答もきっとそんなに長くならないんじゃないかと思うのでだれか暇な人教えて下さい。

Aベストアンサー

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻やM殻の電子は安定した状態を保とうと、K殻へ落ち込みます。このとき(K殻のエネルギー)-(L殻のエネルギー)に相当するエネルギーがあまるので、これがX線となりこのエネルギーをもつX線が発生します。

そこで、potemkineさんの質問にあるとおり、Kαとかの命名法ですが、Kに相当するものは電子が衝突して飛び出した殻を示し、αは飛び出した殻に対していくつ外側の殻から電子が飛び出したのかを示すもので、1つ上からならα、2つ上ならβ。3つ上ならγといったようにあらわします。
例えば、K殻の電子が飛び出し、そこをM殻が埋めた場合(2つ上の準位)はKβ、L殻の電子が飛び出しそこをM殻が埋めた場合はLα
ちなみに下からK殻、L殻、M殻、N殻の順番です。

エネルギーや半値幅(エネルギーの広がり)の面から一般に用いられてるX線は、AlKα、CuKα、MgKαなどです。

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻や...続きを読む

QX線回折(XRD)分析の半値幅について

現在粉末用のXRD装置を使用しているのですが、半値幅に含まれる情報に関して教えてください!
参考書などを呼んでいると、結晶性のピークに着目した場合、ピークの半値幅が大きくなるほど結晶子サイズは小さいことを意味すると書いてあり、これはなんとなくわかりました。
しかし、非結晶性のものを測定すると一般的にはブロードピークとなるものが多いかと思うのですが、相互関係がわかりません・・・。非結晶性のものは結晶子サイズが小さいということではないですよね?

段々結晶子サイズが小さくなっていった時に、少しづつピークはブロードに近づくとは思うのですが、
・結晶子サイズが小さくなっている
というのと、
・非結晶性のものである
というものの区別はどうやって判断したらよいのですか?ある程度は半値幅を超えたら非結晶性のものとかいう基準があるのでしょうか?

Aベストアンサー

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低いか、3)装置による制約
から来ます。
原因3)は基準物質を使い補正計算をしてある程度除去することが
できます。
原因1)の影響を考慮したのがシェラーの式ですが、常に原因2)の寄与
も含まれています。
原因2)は小さくても結晶で有れば散乱強度を決める構造因子は定まります。
ここで構造因子に欠陥や小さくなることで発生した構造の乱れを組込めば
非晶性の広がったハローを再現できるかも知れません。
しかし、非晶性物質では構造の乱れは大きすぎ、結晶学的な構造因子は
もう決められません。
その代わりに、原子の相互配置を確率的に表した動径分布関数が散乱強度
の計算に導入されます。
一つの物質からの散乱強度の計算に、ここまでは構造因子方式、ここからは
動径分布関数方式という使い分けはされていません。

したがって、結晶子サイズが小さくなっているというのと、非結晶性の
ものであるということの明確な境界は無いように見えます。
当然、ある半値幅を超えたら非結晶性のものとかいう基準は有りません。

溶融体を急冷して結晶化させようとした場合、できたモノを欠陥だらけの
極微細結晶からなるとするか、非晶質になったと解釈するかは半値幅だけ
からはできないと思います。

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低...続きを読む

QX線回折・・・試料が粉末と固体による違い?

毎度毎度X線についてです。
イマイチ私の言ってる意味がわからないかもしれませんが、質問です。

 試料が粉末か固体かによる違いは何でしょうか?つまりですね、なぜ粉末状にするのか、ということです。固体を砕けば粉末になりますよね?固体では調べられないことが、粉末なら調べられるということなのでしょうか?
 本で調べたところ、多結晶体(粉末も)は回折が様々な方向におこるそうなのですが、それでしょうか?

Aベストアンサー

> 固体では調べられないことが、粉末なら調べられるということなのでしょうか?

上の記述で「固体」を「結晶」に替えれば、実験的な利便性という意味で、その通りと言えます。

Braggの回折条件 2d・sinθ=nλ (d:面間隔,θ:回折角,λ:波長) [*] はご存知と思います。また、一つの結晶の中には、面間隔の異なるBragg反射面が多数あり、それぞれが結晶に対すして固有の角度(面方位)をもっていることはよろしいでしょうか。

波長の決まったX線を、一つの結晶に当てることを考えて見て下さい。[*]の条件を満たすとき、そのBragg面の鏡面反射の方向に回折線が出ます。結晶中のBragg面はそれぞれ特定の方向を向いていますから、ある方向から単色X線を入れても一般に[*]は成立しません。そこで、入射X線の向きを変えながら、Bragg条件に合うθの面を拾い上げていくという操作が行われます。ただし、結晶中のBragg面は何通りもありますから、θスキャンのためには、常に入射線の鏡面反射となる方向の回折線だけを検出するようにします。これがディフラクトメータ法です。

しかし、このようなスキャンでは、結晶の置き方で決まる、ある仮定された一つの面についての回折条件(θ値)を探ることができるだけです。この結晶中の様々なBragg面の情報をそろえようと思えば、結晶の向きを僅かずつ変えながら、無数の測定を繰り返す必要が生じてしまいます。そこで考案されたのが、お尋ねの粉末法と呼ばれる手法です。結晶を粉々にすることで、全てのBragg面に対して、ディフラクトメータが検知する反射面に一致する確率を与えてしまえば、1回の測定で全ての面のθスキャンができ、結晶固有の回折線パターンが得られるというものです。(まさにコロンブスの卵!)

粉末にして向きがバラバラになっても、常に鏡面反射方向だけの回折を検出するように工夫すれば、Bragg条件の式がそのまま使えるというところがミソです。

> 固体では調べられないことが、粉末なら調べられるということなのでしょうか?

上の記述で「固体」を「結晶」に替えれば、実験的な利便性という意味で、その通りと言えます。

Braggの回折条件 2d・sinθ=nλ (d:面間隔,θ:回折角,λ:波長) [*] はご存知と思います。また、一つの結晶の中には、面間隔の異なるBragg反射面が多数あり、それぞれが結晶に対すして固有の角度(面方位)をもっていることはよろしいでしょうか。

波長の決まったX線を、一つの結晶に当てることを考えて見て下さい。[*]の条件を満た...続きを読む

Qホッピング伝導とはどんなものですか?

電界をかけてその電荷が移動する「電気伝導特性」には物質ごとに色々とあると思います。金属中や半導体中の電気伝導特性は大学の固体物理等でなじみが深いのですが、ホッピング伝導とは具体的にどんなものをさすのかちょっとわからないので教えてください。

分かっているのは「連続ではない状態を電荷がホッピングしながら伝導していく」といった事くらいで、もっとちゃんと知りたいと思っています。特に

・ホッピング伝導のメカニズムは何か。
・そのメカニズムからホッピング伝導を数式化するとどうなるか。
・ホッピング伝導と言われる物質は具体的にどんなものがあるのか。
・この物質はホッピング伝導である。と言い切るには実験的にどのような電気伝導特性を示せばいいのか。

以上四点を知りたいと思っているのですが、ホームページ検索では表層しか分かりませんし、手元の書籍にはヒントは見当たりませんでした。

もしも良い書籍、およびホームページをご存知でしたら教えていただけるだけでも嬉しいのでよろしくお願いいたします。

Aベストアンサー

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化してあったのは,確か電気学会で出している「誘電体現象論」です。
半導体物理の本(SzeのPhysics of Semiconductor Devicesなど)にも出ていると思います。
-------------
PF型の伝導か否かは,測定した電流-電圧特性をPFプロットし,そのグラフの勾配が
所定の値になっているかどうかで判別できたと思います。
今,手元に本がないので正確なことが記述できません。本を見ていただくのが一番と思います。
または,WEB検索で「プール フレンケル」,「Poole Frenkel」と入力すれば,
関連のWEBサイトが見つかると思います。

以上

私が知っていることと,お知りになりたいことがどの程度マッチしているのか自信がないのですが,
私の知っている範囲(半導体関連)でアドバイスしたいと思います。
---------------
電流をになうもの(キャリア=電子and/orホール)が,キャリアの捕獲準位を伝わりながら,
流れているのをホッピング伝導といっており,これをPoole-Frenkel(PF)伝導と言ったりもします。
キャリアの励起は,電界,熱で行います。
私の関わる分野で,たぶん一番有名な材料は窒化シリコン膜です。
定式化して...続きを読む

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Qo-ニトロアニリンとp-ニトロアニリン

薄層クロマトグラフィーで、o-ニトロアニリンとp-ニトロアニリンを分離すると、何故o-の方が長距離進むのでしょうか。

溶媒のジクロロメタンにはp-の方がよく溶けるようですし、極性もo-の方が高いのでは??
と、未熟な私には分かりません。どなたかお願いします

Aベストアンサー

o-ニトロアニリンの場合にはアミノ基の水素とニトロ基の酸素との間に分子内で水素結合ができます。
そのために、p-ニトロアニリンと比較して分子間の水素結合ができにくくなり分子間の引力が減少します。同様の理由で薄層クロマトの固定相(シリカゲル?)と引き合う力もo-ニトロアニリンの方が小さく、展開溶媒の移動にともなう移動距離が長く(Rf値が大きく)なるものと考えられます。

Qアジピン酸の合成について教えてください

シクロヘキサノールからシクロヘキサノン、シクロヘキサノンからアジピン酸を合成する実験を行いました。
シクロヘキサノンからアジピン酸を合成するときの反応式がわかりません。
その際使用した試薬はシクロヘキサノン、過マンガン酸カリウム、水、水酸化ナトリウムです。
どなたか教えていただけませんか?

Aベストアンサー

調べると意外にあったりする.

参考URL:http://www.ek.u-tokai.ac.jp/dl/ajip.pdf

Qブロッホの定理とは何を証明してるのですか?

数式で色々と計算して波動関数の周期性を説明しているのだと思いますが、ブロッホの定理は結局何を意味しているのでしょうか。結晶のように周期ポテンシャルが存在すれば、そりゃあ電子の波動関数も周期的に分布するのでは?と、素人の浅はかな考えを持ってしまっていて、定理の意味やその重要さが見えないままでいます。

どなたかブロッホの定理が示す意味・ブロッホの定理のおかげ可能になった事・理論or工学への貢献などを教えてもらえませんか。

Aベストアンサー

基本並進ベクトル分だけ波動関数を平行移動した時に、もとの波動関数にならなくても位相因子がずれる分には同じ状態である事に変わりはないので何も問題ないんですよ。そしてその位相因子がどういう形になるかを言っているのがBlochの定理です。


人気Q&Aランキング