初めての店舗開業を成功させよう>>

1)なぜエミッタ接地だと位相が反転するのでしょうか?
2)位相が反転することで独特な用法とかがあるのでしょうか?

よろしくお願いします。

A 回答 (1件)

ベース入力電圧が高くなる(1)と、ベース電流が増えます。


ベース電流が増えるとコレクタ電流が増えます。
コレクタ電流が増えると(コレクタには負荷抵抗が入っているので)、コレクタ電圧が下がります(2)。

(1)と(2)の関係を見てください。
みごとに”逆の関係”になっているでしょう?(^_^;)
これを「位相が反転する(した)」と言います。

宿題です。
エミッタフォロワで(入力と出力の関係が)どうなるか考えてみてください。

(答 同相)
    • good
    • 2
この回答へのお礼

回答ありがとうございます。コレクタに入っている負荷抵抗の役割もわかりました。

お礼日時:2007/11/27 06:36

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエミッタ接地増幅回路について教えてください><

教えていただきたいことは2つあります。
(1)エミッタ接地増幅回路はなぜ入出力波形の位相が反転するのでしょうか。
(2)エミッタ接地増幅回路はなぜ入力電圧が大きくなったとき出力波形が歪んでしまうのでしょうか。

1つでもわかる方がいらっしゃいましたらどうか回答よろしくお願いします。

Aベストアンサー

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波形の位相が反転することになります。

(2)
入力電圧Vbeが大きくなったとき出力波形が歪んでしまうのは、動作点が負荷線の線形動作範囲の上限に近づくとそれ以上Vceが頭打ちになって、出力電圧波形が飽和してしまいます。言い換えればコレクタ電圧Vceは接地電圧と直流電源電圧Vccの範囲でしか変化できません。その出力電圧波形は入力電圧Vbeが負荷線上の線形増幅範囲だけです。線形増幅範囲を超えるような大振幅の入力Vbeを入力すると出力電圧の波形が飽和して波形の上下が歪んだ(潰れた)波形になります。

お分かりになりましたでしょうか?

参考URL:http://www.kairo-nyumon.com/analog_load.html

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波...続きを読む

Qエミッタ接地における出力信号の反転について

あけましておめでとうございます。
新年そうそう申し訳ございませんがよろしくお願いいたします。
(1)エミッタ接地回路における入力信号と出力信号の関係についてですが、ベースバイアスを加えた場合には、出力信号は入力信号に対し反転しているのですが、ベースバイアスなしの場合ではも同様に反転するのでしょうか。あくまで、出力信号が反転するのはベースバイアスを加えたときだけなのでしょうか。

(2)この出力信号の反転について、なぜ反転して現れるのでしょうか。理論にこだわりすぎで、このようなものはよく結果として得られるものもあるかと思いますが、どの回路で・・・というか、どのような仕組み、原理から反転しているのでしょうか。

(3)この反転は出力信号で現れますが、コレクト電圧(コレクト-エミッタ間電圧)において、入力信号に対して反転して現れているのでしょうか。

細かい事項で申し訳ございませんがヨロシクお願いいたします。

Aベストアンサー

 エミッタ接地トランジスタ回路における出力信号(電圧)は、入力信号(電圧)に対して反転します(位相が逆になります)。ベースにバイアスを与えるかどうかには関係しません。

 入力信号(電圧)によってベースに電流が流れ込むと、それがコントロール作用をして、コレクタに増幅された電流が流れることが可能になります。電圧増幅するためにはコレクタに一端を電源に接続した負荷抵抗をつけるわけですが、コレクタを通じて負荷抵抗に増幅された電流が流れると、コレクタの電圧は接地側に近づくので、コレクタから取り出す出力信号(電圧)は原理的に入力信号(電圧)に対して反転します。

 エミッタに抵抗をつけ、この抵抗を介してエミッタを接地すると、エミッタの出力信号(電圧)は、入力信号(電圧)と同相になります(反転しません)。

 コレクタとエミッタの両方に抵抗をつけると、コレクタ出力電圧は反転し、エミッタ出力電圧は反転しません。

Qエミッタ接地増幅器の入出力・周波数・位相特性について

実験で、エミッタ接地増幅器のいろいろな特性を調べました。そこで理論値を出し実験値と比べてみようと思ったのですが、理論値の出し方が分からないのがありした。今回実験で使用した増幅回路はhttp://ja.wikipedia.org/wiki/%E5%A2%97%E5%B9%85%E5%9B%9E%E8%B7%AFのエミッタ接地の回路と同じです。周波数が中域の(コンデンサを無視できる)ときの利得の周波数特性、位相特性(π[rad])、入出力特性(Vin、Vout)の理論式のだしかたはわかるのですが、周波数が高域、低域のときの各特性の理論式と低域、高域遮断周波数のだしかたがよく分かりません。感覚的にですが、どの域でも共通な式があり、各域によってコンデンサが開放や短絡され式が変化するような気がしています。参考書やネットで調べたのですが、明確な式が載っておらず困っています。基本的なこととは思いますが、どなたか教えてください。お願いします。

Aベストアンサー

共通な式というのは、コンデンサを入れて計算した式ということですね。
Denkigishiさんのコメントの通り、この回路は低域特性はコンデンサや抵抗の値で決まり、高域はトランジスタの特性で決まります。したがって広帯域に渡ってちゃんと計算するのなら、トランジスタの交流等価回路(SPICEパラメータ)を取り入れる必要があります。しかし、それではあまりに複雑なので、直流的な等価回路を使って計算する方法を紹介します。

hパラメータを使ったトランジスタの直流等価回路は、厳密には【図1】のようになりますが、実用的には【図2】のように簡略化したものを使います[1]。すると、問題のエミッタ接地回路 [3] の交流的な等価回路は【図3】のようになります。図3では、負荷抵抗RLを追加してあります。なぜなら、これがないと、出力コンデンサCoutの影響が出ないからです。この回路から電流と電圧の式を立てると

i0 = j*ω*Cin*( v0 - v1 )
i1 = ( v1 - v2 )/hie
i0 - i1 = v1*( 1/R1 + 1/R2)
i1 + i2 = ( 1/Re + j*ω*Ce )*v2
i2 + i3 = -v3/Rc
i3 = j*ω*Cout*( v3 - v4 )
i3 = v4/RL
i2 = hfe*i1 ← 図2から

ですから、電圧利得( v4/v0 )は

v4/v0 = -j*ω*Cin*( 1/Rc + j*ω*Ce )*hfe*hie/( 1 + hfe )/[ 1/RL + { 1 + 1/( j*ω*Cout*RL ) }/Rc ]/[ hie*( 1/hie + 1/R1 + 1/R2 + j*ω*Cin )*{ hie*( 1/Re + j*ω*Ce )/( hfe + 1 ) + 1 } -1 ]

となります(筆算なので間違ってるかも)。この式を変形して、v4/v0 = A + j*B の形にすれば、利得 = √(A^2+B^2)、位相(入力基準)= atan(B/A) [rad] となります。Excelの複素数計算の関数を使えば、利得=IMABS( )、位相=IMARGUMENT( )です。

なお、hパラメータには周波数依存があるので(データシートのは270Hzでの値)、Denkigishiさんのコメントの通り、これを考慮しないと高域での特性が現実と違ってきます。トランジスタの高周波等価回路の例を資料 [4] に示します。

     i1 →              ← i2
  B ─ hie ─┐   ┌────┬── C     v1 = hie*i1 + hre*v2
   ↑     │+ │      │   ↑     i2 = hfe*i1 + hoe*v2
   v1    hre*v2 ↓hfe*i1  hoe   v2
   │     │- │      │   │
  E ────┴─-┴────┴── E

【図1】 hパラメータを使ったトランジスタの等価回路

     i1 →        ← i2
  B ─ hie ─┐  ┌───── C       v1 = hie*i1
   ↑     │  │      ↑        i2 = hfe*i1
   v1     │  ↓hfe*i1  v2
   │     │  │      │
  E ────┴─-┴───── E

【図2】 簡略化した等価回路

     → i0  v1   → i1    ← i2 v3  → i3
   v0 ─Cin─┬─── hie ┐  ┌──┬──Cout──┬─ v4
         │        │  ↓   │         │
   i0-i1 ↓ R1//R2     └─-┤v2  Rc ↑i2+i3  RL ↓i3
          │           │   │        │
         ┷      i1+i2 ↓│   ┷        ┷
                      ├─┐               ┷ = GND
                     Re Ce               R1//R2 = R1*R2/(R1+R2) 
                      ┷ ┷

【図3】 結合コンデンサのあるエミッタ増幅器の等価回路

[1] 最も一般的なNPNトランジスタの2SC1815Yを使った場合、データシート [2] から、DC的なコレクタ電流が Ic = 1mA のときのhパラメータは、hie = 4.5 kΩ、hre = 0.5×10^(-4)、hfe = 160、hoe = 2.5μSとなっていますが、このうち hre と hoe は小さいので、これらを無視すると、図2に示したような等価回路になります。
[2] 2SC1815データシート(3ページの「hパラメータ-Ic」) http://www.semicon.toshiba.co.jp/docs/datasheet/ja/Transistor/2SC1815_ja_datasheet_020129.pdf
[3] エミッタ接地回路 http://ja.wikipedia.org/wiki/%E7%94%BB%E5%83%8F:Common_emitter.png
[4] トランジスタの高周波等価回路  http://ns.cqpub.co.jp/toragi/TRBN/trsample/2002/tr0209/0209sn7.pdf

共通な式というのは、コンデンサを入れて計算した式ということですね。
Denkigishiさんのコメントの通り、この回路は低域特性はコンデンサや抵抗の値で決まり、高域はトランジスタの特性で決まります。したがって広帯域に渡ってちゃんと計算するのなら、トランジスタの交流等価回路(SPICEパラメータ)を取り入れる必要があります。しかし、それではあまりに複雑なので、直流的な等価回路を使って計算する方法を紹介します。

hパラメータを使ったトランジスタの直流等価回路は、厳密には【図1】のようになり...続きを読む

Q周波数特性の利得の低下について

トランジスタの周波数特性についてお尋ねしたいことがあります。

周波数特性は台形のような形をしているのですが、低域周波数帯と高域周波数帯で利得が低下する原因が分かりません。
初心者でも分かるように簡単に説明してくれませんか?。よろしくお願いします。

Aベストアンサー

トランジスタの増幅回路で入力や出力の結合部分にコンデンサを使うことが一般的ですがこれが原因で増幅度が小さくなる事は有ります。

つまり
信号源→コンデンサ→増幅回路入り口
と言う場合コンデンサのリアクタンスは1/ωCで計算されますがここでω=2Πfですから周波数fが下がればリアクタンスが大きくなって結合が弱まりますね。また補正のためにエミッタアース間にもコンデンサを入れる事が多いですがこれは周波数が低くなると負帰還が多くなり増幅度は下がります。

逆に周波数が非常に高くなるとベース、エミッタ、コレクタ、各電極の配線などの浮遊容量などによって増幅度を下げる方向に作用します。
殊更高くなると半導体内部の電荷の移動時間すら問題になります。

Q反転増幅器の周波数特性

入力電圧V1=300mV、R1=10kΩ、Rf=100kΩの反転増幅回路で周波数を100Hzから200kHzまで徐々に変化させていくと、10kHz以降から位相差が生じて、出力電圧、利得が減少しはじめました。どうしてこんなことが起きるのでしょうか?その根拠がわかりません・・・
そしてなぜ10kHzから生じたのかという根拠もわかりません。
どなたかご回答の程よろしくお願いします。

Aベストアンサー

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増幅回路における周波数特性が右下がりになる理由を理論的に説明したいのですが、回路にコンデンサが使われていないので、カットオフ周波数が求められなくて困っています。オペアンプは751です。右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね? http://okwave.jp/qa3048059.html

非反転増幅、反転増幅の回路実験を行ったのですが、1kHzや100kHz を入力すると、約10倍の増幅が確認できたのに対し、1MHzを入力した場合、約1.2倍となりほとんど増幅が確認できませんでした。 これはなぜでしょうか http://okwave.jp/qa3055112.html

反転増幅回路と非反転増幅回路に周波数特性に違いがあるらしいのですがそれがどういった違いなのかわかりません。わかる方いらっしゃいましたら教えてください。 http://okwave.jp/qa4078817.html

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増...続きを読む

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Qエミッタ接地では何故入出力の波形が逆相に?

 疑問なのは、エミッタ接地では何故入出力の波形が逆相になるか、ということです。 それと同時になぜ他のコレクタ,ベース接地では入出力の波形が同相のままなのでしょうか?

Aベストアンサー

エミッタ接地の場合:
入力電圧をプラス側に振らせると、ベース電流が大きくなり、コレクタ電流がより多く流れるので、コレクタ抵抗での電圧降下が大きくなってコレクタ電圧が下がり、出力はマイナス側に振れます。

コレクタ接地の場合:
コレクタ電流が多く流れればエミッタ抵抗の両端の電圧は大きくなり、出力はプラス側に振れます。

ベース接地の場合:
入力電圧をプラス側に振らせると、ベース-エミッタ間の電圧が下がり、ベース電流は少なくなります。するとコレクタ電流は少なくなるので、コレクタ抵抗での電圧降下が少なくなって出力はプラス側に振れます。

(NPNトランジスタで考えています)

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Q非反転増幅回路の特性

OPアンプを用いて、非反転増幅回路(5倍)をつくり、実験をしたら、次のような結果が得られました。

電圧に対する特性:電圧を上げていくと増幅率が下がる。
周波数に対する特性:周波数を上げていくと、20kHzぐらいから入力電圧と出力電圧の波に位相のずれが生じ始め、50kHzぐらいから増幅率が下がり始めた。

この結果から、高電圧、高周波数範囲では増幅器としての役割を果たさないということは解りましたが、なぜそうなるのかというところが解りません。わかるかた、どうか教えてください。

Aベストアンサー

OPアンプの出力電圧の振幅は電源電圧以上にはできませんから、入力電圧が高くなると当然振り切れてしまいます。OPアンプの種類にもよりますが+-12Vで使ったとしてエミッターフォロワータイプなら約+-9.5V程度、コレクターフォロワータイプやFET出力段になっているものならほぼ電源電圧まで振れます。

増幅率が5倍なら、その1/5、約2V程度で振り切れてしまい、単純に出力電圧/入力電圧の式で計算すると振り切れて以降は、出力電圧は上がりませんから、増幅度は低下します。もし電源電圧より高い出力電圧を必要とするなら、もっと高い電源電圧の増幅器を後ろにくっつけるか、交流ならトランスを使って帰還ループもそこから取る必要があります。

ちなみに最大出力振幅は、エミッターフォロワで、電源電圧-2.5Vです。

それから周波数特性ですが、周波数が高くなってくるとICの中のトランジスタの中にあるPN接合面に生じるわずかな静電容量(要するにコンデンサ)の影響が出て来ます。例えば100pFの接合面容量があったとして、50KHzでおよそ30KΩの抵抗と同じになります。これがトランジスタのベースエミッタ間の容量ならば、入力に並列に30kΩの抵抗が入ったのと同じになり、入力インピーダンスや帰還抵抗の計算に対する影響が無視できなくなります。周波数が高くなればなるほどこういう影響は派手になり、やがては増幅器として機能しなくなります。おおまかで、原因はこれだけじゃないけど、大体こんなお話だと思います。ですから、高周波用や高速動作のものはICの段階からそれなりの作り方をします。

OPアンプの出力電圧の振幅は電源電圧以上にはできませんから、入力電圧が高くなると当然振り切れてしまいます。OPアンプの種類にもよりますが+-12Vで使ったとしてエミッターフォロワータイプなら約+-9.5V程度、コレクターフォロワータイプやFET出力段になっているものならほぼ電源電圧まで振れます。

増幅率が5倍なら、その1/5、約2V程度で振り切れてしまい、単純に出力電圧/入力電圧の式で計算すると振り切れて以降は、出力電圧は上がりませんから、増幅度は低下します。もし電源電...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む


人気Q&Aランキング

おすすめ情報