専門家に聞いた!繰り返す痔の原因は!? >>

大学で心理学を専攻しています。
現在、卒論作成のまっただ中なのですが、困ったことが起きました。
3水準の独立変数での分散分析で有意傾向が出たので多重比較(手計算)を行ってみたのですが、5%水準では有意差は出ませんでした。
でもぎりぎりで出なかったというような感じで、10%の有意傾向なら出そうなのですが、手元にある統計学の本ではStudent化された範囲(q)の値がα=.05とα=.01しか載っていません。

3群間の平均値の比較で誤差の自由度は92なのですが、どなたかこのα=.10のqの値がわかる方はいらっしゃいませんか?

大学に行ってSPSSで分析すれば何の問題もないのですが、運悪く大学は冬期休暇に入ってしまい、パソコン利用の施設も卒論提出の前日まで休館でどうあっても間に合いません。

どなたかお分かりになる方、教えてください!
よろしくお願いします!

このQ&Aに関連する最新のQ&A

A 回答 (2件)

そのものずばりの数字は出せませんが、参考までに。


3ステップで10%水準のqはdf=60のとき2.96で、df=120のとき2.93です。
なので、2.96以上あれば安心です。

以下、蛇足です。
卒論で切羽詰ってるなら言っても無駄かもしれませんが、主効果が有意傾向で、その上多重比較も有意傾向だと、おそらくそれはデータとして意味がありません。
というか、仮説によってはそもそも多重比較をしてはいけないというレベルです。
どうしても仮説の検討に必要というのでなければ、論文に書くべきではありません。
「有意傾向」などというおかしな言葉を遣わずに、有意でないことを素直に受け入れましょう。
    • good
    • 0
この回答へのお礼

ありがとうございます!
コレでとりあえず検定ができます。

ご指摘の点ですが、主効果が有意傾向で多重比較も有意傾向だと意味がないというのはどういうことなのでしょうか?
3水準の独立変数で一元配置分散分析の後、3群間のどこに差が出たのかとHSD検定をしてみたのですが…
一応仮説には直接関係しない分析なのですが、書かないほうがいいのでしょうか?

お礼日時:2007/12/27 22:02

多重比較には、事前に仮説を持って行う場合と、そうでない場合があります。

質問者様の場合は後者ですね。
分散分析の結果を見て、その事後検定として行います。
この場合、分散分析の結果が有意であることが前提として必要です。
そうでないと多重比較をする理由がないからです。

主効果が「有意傾向」と書かれているということは、恐らく10%水準で有意なのでしょう。
ご承知のように、10%水準ではエラーが多すぎるため、その「差」が誤差であり、「もともとそんなものはなかった」と普通は判断されます。
つまり今回の場合、前提条件に既に疑問符がついています。
さらに加えて、多重比較の結果も10%水準有意とあんまりはっきりしない。

つまり「差があるかもしれない」状態でさらに「差があるかもしれない」という程度の結果を重ねて、果たしてそこに何の意味があるのかという疑問です。
非常に曖昧なデータを論文中に提示することになり、むしろ質問者様が考察を書くときに困るんじゃないでしょうか。
仮説に関係しないんなら、書かない方が無難なのではないかと思います。
話の本筋から多少なりともずれてしまうわけですし。

というのが建前で。
卒論で一要因の実験をやっていて、「差がなかった」では途方に暮れてしまいますよね。
私の蛇足以降の回答を見なかったこと……(以下略)、というのも、方策としてアリといえばアリです。
こういっては失礼ですが、卒論にそこまで厳格なものは求められません。本来は憂うべきことなんでしょうけど。
ただ、卒論はちゃんと出すのが何より大事です。
あと少しのようですので頑張ってください。
    • good
    • 0
この回答へのお礼

なるほど、確かにそうですね。
この分析については私の卒論の本題からは外れていて、追加分析として行ったものですから、なくても特に問題はないものなのですが、もし字数が卒論として要求されている文量に満たなかったときに必要かな、と。
ですがご指摘の通り、確かにその有意傾向しか出なかったものを除いたほうが考察はしやすくなりますので、書かない方向でいこうと思います。
いろいろ詳しく教えてくださってありがとうございました!
提出まであと少ししかありませんが、頑張ります。

お礼日時:2007/12/29 00:57

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q多重比較をエクセルでやるには?

心理学のレポートの課題を出されているのですが
多重比較ってエクセルでやるにはどの関数を
使えばいいのでしょうか?
(ちなみに私が使っているのはエクセル97です)
二つの項目の有意差を検定するならt検定を使えるのですが
多重比較となるとt検定は使えないんですよね。
ご存知の方、教えてください。よろしくお願いします。

Aベストアンサー

 まず質問についての答えです。
 エクセルで多重比較をやることは不可能ではないと思います。ただ、単一の関数を使って簡単にやるのは、無理だと思います。やるとすれば、多重比較の計算式をエクセル上で実行するという方法しかないでしょう。

 って言っても、なかなか難しいと思います。そこで、インターネット上で分散分析と多重比較をやってくれるページがあるので、ご紹介します。JavaScript-STARというものですが、参考URLに載せておくので行ってみてください。

参考URL:http://www.kisnet.or.jp/nappa/software/star/index.htm

QTukeyの検定のやり方について

二元分析までは終わりましたが、Tukeyの検定が何を読んでもできません。ギブアップです。どなたかTukeyの検定をしてくださる方を教えてください。実験は作物の生育調査です。平均値で二元分析をしたので検定数は少ないです。よろしくお願いいたします。

Aベストアンサー

Tukeyの方法で検定したいデータがあるけどやり方が分からない、ということでしょうか。
なんかの統計ソフトを入手するのがいいと思いますが(市販品なら例えばJMP(http://www.jmp.com/japan/)、フリーソフトなら例えばR(http://www.r-project.org/))、サイト上であれば以下のURLで出来ます。
http://www.gen-info.osaka-u.ac.jp/testdocs/tomocom//tukey.html

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む

Q統計で、有意水準を、0.01あるいは、0.05に決める意味は?

統計で、有意水準を、0.01あるいは、0.05に決める意味が
わかりません。分析する人によって決められると思うのですが、何を基準に
きめればよいのでしょうか?

あと、t検定とは、どんな検定の仕方なのでしょうか?よろしくお願いします。

Aベストアンサー

◇0.05と0.01の使い分けについて

 一般的には 0.05 (危険率5%)を使います。

 理由は、工業製品の場合、多数の集合体から少数をサンプリングして
 カタマリが合格するか?または違いがあるか短時間に判断を
 下す(スクリーニングする)ことが要求されます。 
  また、正確な結果を求めるには、それ相応のデータ数を採る必要
 ありますが、それには時間と労力が掛かります。
 従いまして、費用対効果を念頭におき、危険率を決めます。
 
 大抵の場合、危険率5%の有意差検定にて済みます。
 但し、要求が厳しい場合とか、測定結果の差が大きい場合には
 1%でも検定して結果を記載します。

◇t分布表にて判断する適用範囲;下記条件の場合 t分布を使います。

<< 適用条件 >>
 ロットが異なる2つのサンプル群の標準偏差が未知な場合。
<< 適用範囲 >> 
 1.サンプリングして得られた平均値の差に違いがあるか?判断する場合。
 2.平均値の範囲を推定する(区間推定)場合。

例)ある製品を条件を変えて製造した場合、2つの集合体(カタマリ)
   ができる。そこから各30ケづつサンプリングして平均値を求める。
   この平均値に違いがあるか判断する場合に t分布を使います。

 一般的な工業製品は、全数検査しないうえ、これから作るモノの品質を
 予測しながら保証しければなりません。この場合にはt分布を使うわけです。
 
 一方、サンプル全数を測定して標準偏差が分かっている場合は、
 正規分布表にて有意差検定します。
 つまり、母集団の標準偏差が既知(キチ)の場合、正規分布表を使います。

◇その他
 ご参考まで、既にご存知であろうと思いますが・・・
・0.05 とは危険率 5%という意味で, 確率 5%の割合で間違った
 判断を下す事があるという事です。 
・検定結”判果にて ”有意差が無い”ということは ”同じである"という事
 ではありません。 このデータだけからでは断が下せない”と
 いうだけです。
                       以 上
                  

◇0.05と0.01の使い分けについて

 一般的には 0.05 (危険率5%)を使います。

 理由は、工業製品の場合、多数の集合体から少数をサンプリングして
 カタマリが合格するか?または違いがあるか短時間に判断を
 下す(スクリーニングする)ことが要求されます。 
  また、正確な結果を求めるには、それ相応のデータ数を採る必要
 ありますが、それには時間と労力が掛かります。
 従いまして、費用対効果を念頭におき、危険率を決めます。
 
 大抵の場合、危険率5%の有意差検定にて済みま...続きを読む

Qサンプル数の異なる2群間におけるT検定について

サンプル数の異なる(50,15)2群間の身長の比較を行うのに、T検定をするよう指示を受けました。これは、長男と次男での出産時の身長に差があるかを調べるためですが、長男50人分と次男15人分(母親は異なる)のデータのため、サンプル数が違います。またT検定は私の理解では平均の比較(2群の場合)を行うものであるため、平均ではないこれらにどうしてT検定が良いのか、また統計ソフト(STATISTICAかエクセル)を使う場合にどのようにデータを入力すれば良いのかわかりません。
どなたかご存知の方がいらっしゃればアドバイスをいただけたらうれしいです。
よろしくお願いします。

Aベストアンサー

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想定でき、計算式が分かりやすく、サンプル数が2群で異なっても良い、その数も少なくて良い(大差があるので、1群3例でも有意差をだしています)、そして有意差が出やすいからです。

 この場合は、正規分布しているという条件を満たしているとはいえないだろうと判断します。その場合は、F検定をしてください。これは、2群の平均値ではなく、バラツキによって検定する方法です。正規分布している必要は無いとされています。
 F検定で有意差があれば、問題ありません。t検定では有、F検定ではなし、になると方針が定まりませんが(現在このデータで悩んでいます)。

>どのようにデータを入力すれば良いのか
 t検定を指示した人は、身近にいないのでしょうか。その人に訊くのが一番です。身近にいないのなら、いないと返答があれば、書き込みますが。 というのも、大学などの研究テーマだと、指導教員をさしおいて、はマズイノデ。もしも、このテーマに興味を持てば、私が実施して先に発表します。こんな研究内容がハッキリ分かる書き込みを4年生がやったら、研究室は追放ですね。
 長男、次男だけではなく、三男、四男となると多重比較という方法になります。この場合、H検定(エクセルだけでは無理でしょう)を使います。

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想...続きを読む

QTukeyHSDとTukey法について。

TukeyHSDとTukey法って違うものですか?
統計ソフトRを使っています。Tukeyを用いて多重比較をしたいと思い、調べていると、
TukeyHSD()
→http://www.nanzan-u.ac.jp/~kamiya/r/ana3type.html
とTukey()
→http://aoki2.si.gunma-u.ac.jp/R/tukey.html
がでてきます。これらに違いはあるのでしょうか。どちらを用いれば良いか分からず困っています。
Rも統計も初心者です。お願い致します。

Aベストアンサー

出力されている内容が少し違うだけで、どちらも同じものです。
TukeyHSDはgroup間の差とその信頼区間とp値、Tukeyは統計量とp値を出力しています。
p値をみると同じであることから、それがわかると思います。
データはどちらもhttp://aoki2.si.gunma-u.ac.jp/R/tukey.htmlのテストデータを使用しました。

TukeyHSDの出力結果
diff lwr upr p adj
2-1 1.1964286 -0.6753086 3.06816577 3.630248e-01
3-1 2.9047619 0.8927049 4.91681894 1.975521e-03
4-1 4.7142857 2.7811638 6.64740758 6.970838e-07
5-1 2.7142857 0.7811638 4.64740758 2.687670e-03
3-2 1.7083333 -0.2448214 3.66148809 1.090560e-01
4-2 3.5178571 1.6461199 5.38959435 6.039780e-05
5-2 1.5178571 -0.3538801 3.38959435 1.567591e-01
4-3 1.8095238 -0.2025332 3.82158084 9.414444e-02
5-3 -0.1904762 -2.2025332 1.82158084 9.986795e-01
5-4 -2.0000000 -3.9331219 -0.06687813 3.978055e-02

Tukeyの出力結果
t p
1:2 1.854090 3.630248e-01
1:3 4.187543 1.975521e-03
1:4 7.073685 6.970838e-07
1:5 4.072727 2.687670e-03
2:3 2.537026 1.090560e-01
2:4 5.451580 6.039780e-05
2:5 2.352204 1.567591e-01
3:4 2.608633 9.414444e-02
3:5 0.274593 9.986795e-01
4:5 3.000957 3.978055e-02

出力されている内容が少し違うだけで、どちらも同じものです。
TukeyHSDはgroup間の差とその信頼区間とp値、Tukeyは統計量とp値を出力しています。
p値をみると同じであることから、それがわかると思います。
データはどちらもhttp://aoki2.si.gunma-u.ac.jp/R/tukey.htmlのテストデータを使用しました。

TukeyHSDの出力結果
diff lwr upr p adj
2-1 1.1964286 -0.6753086 3.06816577 3.630248e-01
3-1 2.9047619 0.8927049 4.91681894 1.975521e-03
4-1 4.71428...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

QT検定とMann-WhitneyのU検定の使い分け

ある2郡間の平均値において、統計的に有意な差があるかどうか検定したいです。ちなみに、対応のない2郡間での検定です。

T検定を行うには、ある程度のサンプル数(20以上程度?)があった方が良く、サンプル数が少ない場合には、Mann-WhitneyのU検定を行うのが良いと聞いたのですが、それは正しいのでしょうか?
また、それが正しい場合には実際にどの程度のサンプル数しかない時にはMann-WhitneyのU検定を行った方がよろしいのでしょうか?
例えば、サンプル数が10未満の場合はどうしたらよろしいのでしょうか?

また、T検定を使用するためには、正規分布に従っている必要があるとのことですが、毎回正規分布に従っているか検定する必要があるということでしょうか?その場合には、コルモゴルフ・スミノルフ検定というものでよろしいのでしょうか?

それから、ノンパラメトリックな方法として、Wilcoxonの符号化順位検定というものもあると思いますが、これも使う候補に入るのでしょうか。

統計についてかなり無知です、よろしくお願いします。

Aベストアンサー

結局ですね、適切な検定というのは適切なp値が得られるということなんですよ。適切なp値というのは第1種の過誤と第2種の過誤をなるべく低くするようにする方法を選ぶということなのですね。

従来どおりの教科書には「事前検定をし、正規性と等分散性を仮定できたら、、、」と書いていありますが、そもそも事前検定をする必要はないというのが例のページの話なのです。どちらが正しいかというと、どちらも正しいのです。だから、ある研究者はマンホイットニーのU検定を行うべきだというかもしれませんし、私のようにいかなる場合においてもウェルチの検定を行う方がよいという者もいるということです。

ややこしく感じるかもしれませんが、もっと参考書を色々と読んで分析をしていくうちにこういった内容もしっくり来るようになると思います。

Q「以降」ってその日も含めますか

10以上だったら10も含める。10未満だったら10は含めない。では10以降は10を含めるのでしょうか?含めないのでしょうか?例えば10日以降にお越しくださいという文があるとします。これは10日も含めるのか、もしくは11日目からのどちらをさしているんでしょうか?自分は10日も含めると思い、今までずっとそのような意味で使ってきましたが実際はどうなんでしょうか?辞書を引いてものってないので疑問に思ってしまいました。

Aベストアンサー

「以」がつけば、以上でも以降でもその時も含みます。

しかし!間違えている人もいるので、きちんと確認したほうがいいです。これって小学校の時に習い以後の教育で多々使われているんすが、小学校以後の勉強をちゃんとしていない人がそのまま勘違いしている場合があります。あ、今の「以後」も当然小学校の時のことも含まれています。

私もにた様な経験があります。美容師さんに「木曜以降でしたらいつでも」といわれたので、じゃあ木曜に。といったら「だから、木曜以降って!聞いてました?木曜は駄目なんですよぉ(怒)。と言われたことがあります。しつこく言いますが、念のため、確認したほうがいいですよ。

「以上以下」と「以外」の説明について他の方が質問していたので、ご覧ください。
http://oshiete1.goo.ne.jp/kotaeru.php3?qid=643134


人気Q&Aランキング