初めて質問します。emiyanです。
累乗根の計算で次の三つがどうしても解けません。よろしくお願いします。
{(8/27)-1/3}3/2÷(3/2)-1/2

8/3×6√9+3√-24+3√1/9

3√16+3√32-2×3√2/3√2-1

の三つです。できれば詳しい解き方も教えてください。
問題が多くてすいません。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

問題が分かり難いのですが,



> {(8/27)-1/3}3/2÷(3/2)-1/2

 xの 1/2 乗などを x^(1/2) と書くとすると,問題の式は { [ (8/27)^(-1/3) ]^(3/2) } ÷ [ (3/2)^(-1/2) ] ですか?

> 8/3×6√9+3√-24+3√1/9
> 3√16+3√32-2×3√2/3√2-1

 √ は何処までかかっていますか?
 ( )で括るなどして示さないと判りずらいと思います。


 とりあえず参考 URL の「1.指数の拡張1:中学校で学んだ指数法則」,「2.指数の拡張2:逆数の指数の導入」,「3.指数の拡張3:n乗根の導入」,「4.指数の拡張4:分数の指数の導入」あたりを御覧になってみて下さい。

参考URL:http://shigihara.hoops.ne.jp/log.htm
    • good
    • 0
この回答へのお礼

rei00さん、回答有難う御座いました。
どうやって指数や累乗根の表したら良いのか
わからなくて、おかげで勉強になりました。
ありがとうございました。

お礼日時:2002/09/22 14:30

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Q5+√3/5-√3 - 5-√3/5+√3

5+√3/5-√3 - 5-√3/5+√3
答えを教えて下さい。
お願いします。

Aベストアンサー

おっと失礼。

=(14+5√3)/11 …… (1)
=(14-5√3)/11 …… (2)

∴与式=(1)-(2)=10√3/11

Qcosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 +

cosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 + {(x-π/4)^3/3!}・sin(θx)  
(0<θ<1)

f(x) = (4/π^2)・{2(x-π/4)(x-π/2)-√2・x(x-π/2)}
このグラフが分かりません…
教えてください!

Aベストアンサー

+ {(x-π/4)^3/3!}・sin(θx) は
+ {(x-π/4)^3/3!}・cos(θ(x-π/4)) ではないかと...違うかな?

で、これは cosx そのものです。θは x の関数なのでそれに惑わされないように。


下のはそれでなく、f(x)=(8/π^2){ (x-π/4)(x-π/2) - √2 x(x-π/2) } が正しいと思います・・・
このグラフは添付した図になります。
かなり近いです。

描き方は、計算機を用意して頂点を数値計算、あとは (0, 1) 、(π/4, 1/√2) 、(π/2, 0) を通るように二次関数のグラフを描けば良いです。
あるいはグラフ描画ソフトの力を借ります。

Q{2+√(-121)}^(1/3) + {2-√(-121)}^(1/3) = 4

数学の本を読んでいまして、

{2+√(-121)}^(1/3) + {2-√(-121)}^(1/3) = 4

といった式変形が出てきました。
ここでは(1/3)乗と書いていますが、本では√の左に3を書いて3乗根の意味です。

いわゆる二重根号と思いますが、どのようにして、変形されたのでしょうか?

Aベストアンサー

与式は4だけではなく、他の実数値も取ります。
又、虚数の範囲では更に多くの値を取ります。

先ず、A=(2+11i)^(1/3) を求めてみます。
A^3=2+11i.
A=a+bi (a, bは実数)とおくと、
(a+bi)^3=2+11i より、実数部分と虚数部分を比較して、
a^3-3ab^2=2 ...[1]
3a^2-b^3=11 ...[2]
この2式から普通に計算すると大変なので、工夫します。
[1]^2+[2]^2 を計算すると
a^2+b^2=5 ...[3]
[1], [2], [3]よりa, bを求めると、
A=2+i, -1+(√3)/2+(-1/2-√3)i, -1-(√3)2+(-1/2+√3)i.

同様に、B=(2-11i)^(1/3) からBを求めると、
BはAの共役複素数になり、
B=2-i, -1+(√3)/2-(-1/2-√3)i, -1-(√3)2-(-1/2+√3)i.

よって、与式A+Bは3*3=9通りの値を取ります。
この内、実数となるのは共役複素数の組み合わせで、
4, -2+√3, -2-√3, の3通りです。

与式は4だけではなく、他の実数値も取ります。
又、虚数の範囲では更に多くの値を取ります。

先ず、A=(2+11i)^(1/3) を求めてみます。
A^3=2+11i.
A=a+bi (a, bは実数)とおくと、
(a+bi)^3=2+11i より、実数部分と虚数部分を比較して、
a^3-3ab^2=2 ...[1]
3a^2-b^3=11 ...[2]
この2式から普通に計算すると大変なので、工夫します。
[1]^2+[2]^2 を計算すると
a^2+b^2=5 ...[3]
[1], [2], [3]よりa, bを求めると、
A=2+i, -1+(√3)/2+(-1/2-√3)i, -1-(√3)2+(-1/2+√3)i.

同様に、B=(2-11i)^(1/3) ...続きを読む

Q=1+(1/√3) /1-1・(1√3) =√3+1/√3-1 この式の途中式をおしえてください。

=1+(1/√3) /1-1・(1√3)

=√3+1/√3-1

この式の途中式をおしえてください。
どうしてこうなるのかわからないので

Aベストアンサー

テキスト形式で描く場合は、それなりの注意が必要です。
問題の式は、{1+(1/√3) }/{1-(1/√3)} ではないですか。
つまり、平方根を含む繁分数ですね。
分母、分子をそれぞれ分数を含むのですから、それぞれを分母の有理化をすれば良いのです。


人気Q&Aランキング

おすすめ情報