今だけ人気マンガ100円レンタル特集♪

(わかりにくいのですが)真数が絶対値つきの対数がある、対数方程式
の問題の練習がしたいというか解き方を確認したいのですが、私の手持ちの参考書・問題集にそれが載っているものがありません。

この問題集には載っているよ、というものがあったら書店で見てこようと思うので、教えてください。

よろしくお願いします。

A 回答 (2件)

真数は正ですのでゼロにはならないですから、


絶対値の中の式が正の場合と負の場合に場合分けして解いて下さい。
    • good
    • 1

ご質問とは直接関係ないですが、


1/(x+a) を不定積分すると log|x+a| です。
参考になるかな?
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QLogと絶対値

こちらの、|logaX| = b (a>0, a=/ 1) という問題なのですが、
絶対値が付いただけで突然パニック状態です。

普通に解けば X = a^b だと思うのですが、絶対値が付いても回答は同じに思えて仕方がありません。

この場合、絶対値が付くとどう変わるのでしょうか?
ご存知の方いらっしゃったら教えてください。

Aベストアンサー

No.1さんの回答は,

  |log aX| = b
というのは,
    log aX  = ±b
ということを表しているから,
        X  = a^±b (答)
ということなので,± を忘れている.

という意味だと思いますが・・・

Q対数の絶対値

y=log(2x-1/2x+1)を微分せよって問題です。

解答は与式をlogl~~l - logl~~l と、上引く下という風にばらしていますが、その際、絶対値がついています・・・。
確かに、真数条件として 真数>0であるから、絶対値が必要ってことですよね…。
けどなぜ与式に絶対値がついてないのでしょうか…?

Aベストアンサー

>けどなぜ与式に絶対値がついてないのでしょうか…?

 それは、与式から与えられた暗黙の条件になっています。
 つまり、
  (2x-1)/(2x+1)>0   ・・・・(A)
ということです。

 さて、ばらしたときに絶対値が付く理由ですが、式(A)の条件だけからは、(2x-1)と(2x+1)の符号は、
  (2x-1)>0 かつ (2x+1)>0  ・・・・(B)
   または
  (2x-1)<0 かつ (2x+1)<0  ・・・・(C)
の2つの可能性があります。
 もし、他の条件から、式(B)の関係しかありえないことが言えるのなら、ばらしても絶対値記号をつける必要はありませんが、もし式(C)の可能性もあるとしたら、対数の中身は正でなければなりませんから、
  y=log{(2x-1)/(2x+1)}
   =log|2x-1|-log|2x+1|
と絶対値をつけてばらさなければなりません。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q対数・絶対値・絶対値の対数を取る事についてです。

log|x|=log|y|⇔x=y⇔|x|=|y|⇔logx=logy
⇔は同値です。合ってますか?

Aベストアンサー

No2・3です

log|x|=log|y| …(1)
x=y …(2)
|x|=|y| …(3)
logx=logy …(4)

結論
(1)⇒(3)      (x、y≠0)
(2)⇒(3)
(3)⇒×       
(4)⇒(1)、(2)、(3)  (x=y>0)

x、yが0以外の実数の時 という条件付きであれば
(1)⇒(3)
(2)⇒(3)
(3)⇒(1)
(4)⇒(1)、(2)、(3)

0<x、yの条件付きの場合
(1)⇔(2)⇔(3)⇔(4)

Q絶対値の外し方について

友達がこんなテクニックがあるって教えてくれたんですけど、

|3x^2 +x +2| = 0
っていう方程式を解こうと思ったら、絶対値外すわけですけど、

「判別式D = 1 - 24 < 0
よって、-(3x^2 +x +2) = 0」

という方法があるんだよと言いました。
これって理にかなった方法ですか?
絶対値の中の方程式を判別式でやって、それが負ならマイナスで外れるんですか?
本当だとしたら理由を教えてもらえないでしょうか。

あと、判別式が正、0の場合はどうなるんでしょうか?

Aベストアンサー

>|3x^2 +x +2| = 0
>「判別式D = 1 - 24 < 0
>よって、-(3x^2 +x +2) = 0」

ダメですね。これができるのはx^2の係数がマイナスのときだけです。

本問ではx^2の係数が3でプラスなので 3x^2 +x +2 = 0
となります。なぜかはy=3x^2 +x +2のグラフと判別式の関係を考えてください。
判別式が正、0の場合もこの延長で分かるはずです。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

QWordで、1ページを丸ごと削除するには?

1ページしか必要ないのに、真っ白な2ページ目がその下に表示されてしまった場合、この余分な2ページ目を一括削除(消去)する為に、何かいい方法があるでしょうか?

Aベストアンサー

<表示されてしまった場合>
これはそれなりに理由があるわけで、改ページや改行によって、次のページにまで入力が及んでいる時にそうなります。
特に罫線で表を作成し、ページの下一杯まで罫線を引いたときなどには、よくなる現象です。

さて、メニューの「表示」で段落記号にチェックが入っていないと、改行や改ページなどの入力情報が見えず、白紙のページを全て選択→削除してもそのままということが良くあります。
1 改行マークが白紙のページの先頭に入っていれば、それをBackSpaceで消してやる。
2 罫線を使っている場合は、それでも効果がない場合がありますが、その時は行数を増やしてやる。
などの方法があります。

Q1÷0の答えを教えて下さい

子供に1÷0はいくつと聞かれゼロでしょと答えたら
姪っこに無限大だと言われました。
確かに小さい数で割れば答えは大きくなるのでゼロで
割れば無限に大きな数となるのかも知れないのですが
自分のあやふやな記憶ではゼロで割ったらゼロになると
教えられたような・・・。
検索してみたのですが難しい理論がずらずら並びいったい
正解はなんなのか良くわかりません。
「計算不能」なのか「無限大」なのか「ゼロ」なのか。
どなたか教えて下さい。

Aベストアンサー

「0で割る」ことについて書かれているサイトを紹介しますね。
そのサイトによると、
----------------------------------------
数学では「0 で割る計算は除外して考える」ことになってます.
つまり、
「0 で割る計算は定義しない」
のです.
----------------------------------------
とあります。

私は、高校で数学を学んだのですが、
分数で、分子が0を除く数(正確には実数)で、分母を限り無く0に近付けたとき、その分数は「無限大へ向う」(正確には「無限大に発散する」)と教わりました。
※分子とは、分数の上にのっかってる数
 分母とは、分数の下にある数 

これは、高校で習う「数学?の極限」という分野で出てくるお話です。

分数において、「分母を0にした場合の値は定義されてない」であり、また、「分数を限り無く0に近付けた時に、どんな値になるかというのは、考えることができる」ということなんです。

何かのお役に立てれば幸いです。

参考URL:http://www.uja.jp/contents/math/divbyzero.html

「0で割る」ことについて書かれているサイトを紹介しますね。
そのサイトによると、
----------------------------------------
数学では「0 で割る計算は除外して考える」ことになってます.
つまり、
「0 で割る計算は定義しない」
のです.
----------------------------------------
とあります。

私は、高校で数学を学んだのですが、
分数で、分子が0を除く数(正確には実数)で、分母を限り無く0に近付けたとき、その分数は「無限大へ向う」(正確には「無限大に発散する」)と教わりました...続きを読む

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です


人気Q&Aランキング