フーリエ変換の問題を解いていて
f(x)=1/2a(|x|<a) , 0(|x|>a)  をフーリエ変換したら sin(ax)/ax となったのですが、これを逆フーリエ変換したらf(x)になるはずですよね?
公式にあてはめて何度計算しても収束させることができず積分がうまくできないのですが、どうやればいいのでしょうか。。

A 回答 (3件)

#1,#2です。


フーリエ逆変換の記号の訂正です。

A#2の上から7行目
>={1/(2a)} L^(-1){1}|(x=x+a)
={1/(2a)} F^(-1){1}|(x=x+a) 
↑ F(ω)=1のフーリエ逆変換した「xの関数」のxを(x+a)に置換する
    • good
    • 0
この回答へのお礼

詳しく教えていただいてありがとうございました。
難しいですね・・・また何かあればよろしくお願いします。

お礼日時:2008/01/30 12:44

>{1/(4πai)}∫[-∞,+∞][ exp(i(a+x)ω)/ω - exp(-i(a-x)ω)/ω ]dω


=g1(x)+g2(x)=f(x)と置くと
g1(x)={1/(4πai)}∫[-∞,+∞][ exp(i(a+x)ω)/ω]dω
={1/(2a)}{1/(2π)}∫[-∞,+∞][ exp(i(a+x)ω)/(iω)]dω
g1'(x)={1/(2a)}{1/(2π)}∫[-∞,+∞][ exp(i(a+x)ω)]dω
={1/(2a)}{1/(2π)}∫[-∞,+∞] {exp(iaω)}{exp(ixω)]dω
={1/(2a)} L^(-1){1}|(x=x+a)
={1/(2a)}δ(x+a), δ(x)はディラックのデルタ関数(参考URL)。
g1(x)=∫{1/(2a)}δ(x+a)dx={1/(2a)}u(x+a)+C1
同様に
g2(x)={1/(4πai)}∫[-∞,+∞][ exp(i(-a+x)ω)/ω]dω
={1/(2a)}u(x-a)+C2
f(x)={1/(2a)}{u(x+a)-u(x-a)}+C (C=C1+C2)
f(-∞)=0とすれば、 C=0
∴f(x)={1/(2a)}{u(x+a)-u(x-a)},u(x)はユニットステップ関数。
これはもとのf(t)と同じです。

計算の仕方は、フーリエ変換の公式をよく調べてじっくり考えて
自分でお考え下さい。

参考URL:http://en.wikipedia.org/wiki/Dirac_delta_function
    • good
    • 0

>フーリエ変換したら sin(ax)/ax となったのですが、


となりませんね。
なぜフーリエ変換したのに,変換後の式にxが現れるのだろうね。
しっかりして下さい。
ちゃんとフーリエ変換すれば、逆変換もできるはず。

質問するには、質問者さんの解答の式変形や逆変換の定義式などを
ちゃんと書いて質問して下さい。

この回答への補足

すいません・・・関数がごっちゃになってました・・・

f(x)=1/2a(|x|<a) , 0(|x|>a)  をフーリエ変換したら
F(ω)=sin(aω)/((aω) でした。

それを逆変換の公式にあてはめると
1/2π{∫[-∞,+∞][ F(ω)*exp(iωx) ]dω}となると思うのですが
sin(aω)/(aω)*exp(iωx)の積分の仕方がわかりませんでした。

間違ってると思いますが、色々な方法で計算してみて、
sin(aω)を{exp(iaω)-exp(iaω)}/2i の形にしてまとめると
1/4πai{∫[-∞,+∞][ exp(i(a+x)ω)/ω - exp(-i(a-x)ω)/ω ]dω}
としてみましたが、積分ができませんでした・・・何か解き方があれば教えてください。

補足日時:2008/01/29 15:43
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qフーリエ級数とフーリエ変換

大学の試験で問題が発表されて、そのうちの一つに
「フーリエ変換とはどういうものか述べよ」というのがありました。
そこで疑問に思ったのですが、フーリエ級数とフーリエ変換の違いって何ですか?
自分なりに調べてみて、

・フーリエ級数は、任意の関数がある区間で、三角関数の足し合わせで表現したもの。
・フーリエ変換は、フーリエ級数展開の周期を無限大まで飛ばしたもの。こうすることで、元の関数との誤差が0になる。

これって正しいですか?(数学の試験ではないので、難しい数式とかで証明する必要はありません)

Aベストアンサー

似たような用語で「フーリエ展開」も有ります。
フーリエ変換とかフーリエ展開は、歪んだ波からフーリエ級数を求める事を言います。つまり、フーリエ変換やフーリエ展開は操作(動詞or動名詞)、フーリエ級数はその結果を言うわけです。

一方、工学の世界では、複雑な波を、周波数別に分離する手段としてフーリエを使います。どちらかと言うと位相は気にせずに周波数とその強さだけを気にします。
このときも、フーリエ変換とかフーリエ展開といっていると思います。
よく、アンプの特性グラフなどで、縦軸:振幅、横軸:周波数と言うのを見ます。
波の分析で「スペクトラムアナライザ」というのを使いますが、これなど、まさに周波数とその強さだけを、ブラウン管上に表示するものです。

Qシンク関数のフーリエ変換

現在独学でフーリエ変換を勉強しています。
矩形波のフーリエ変換はsinc関数になることは分かりました。
そこで、sinc関数を逆フーリエ変換すると矩形波となると思ったのですが、
sinc関数のフーリエ変換が矩形波であると書いてあるサイトがありました。

なぜ逆フーリエではなく、フーリエが矩形波となるのですか。
また、sinc関数をフーリエ変換する過程が分かりません。
どなたか分かる方がいましたら、途中式をよろしくお願いします。

Aベストアンサー

フーリエ変換とフーリエ逆変換は双対関係にあるからです。
つまり時間t領域とf(ω=2πf)領域を入れ替えても数式的に
フーリエ変換とフーリエ逆変換の関係が成り立つ関係にあると言うことです。

詳細は以下URLをご覧下さい。
http://laputa.cs.shinshu-u.ac.jp/~yizawa/InfSys1/basic/chap4/index.htm
http://www12.plala.or.jp/ksp/fourieralysis/Fourier/
http://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B

>なぜ逆フーリエではなく、フーリエが矩形波となるのですか。
>また、sinc関数をフーリエ変換する過程が分かりません。
定義式で
(t,f)→(f,-t)と形式的に置き換えてもフーリエ変換対が成り立つということです。
つまり、g(t)のフーリエ変換をG(f)、G(f)の逆変換をg(t)とすれば定義より
G(f)=√(1/2π)∫[-∞,∞]g(t)e^(-i2πft)dt
g(t)=√(1/2π)∫[-∞,∞]G(f)e^(i2πft)df
機械的に、(t,f)=(f,t)で置換し、式を上、下入れ替えると
g(f)=√(1/2π)∫[-∞,∞] G(t)e^(i2πft)dt
G(t)=√(1/2π)∫[-∞,∞] g(f)e^(-i2πft)df
t→-tで置換すると
g(f)=√(1/2π)∫[∞,-∞] G(-t)e^(-i2πft)(-dt)
=√(1/2π)∫[-∞,∞] G(-t)e^(-i2πft)dt
G(-t)=√(1/2π)∫[-∞,∞]g(f)e^(i2πft)df
G(f)が偶関数であれば、G(-t)=G(t)なので
g(f)=√(1/2π)∫[-∞,∞] G(t)e^(-i2πft)dt
G(t)=√(1/2π)∫[-∞,∞]g(f)e^(i2πft)df
(証明終わり)
導出された関係は、G(t)のフーリエ変換がg(f),
g(f)の逆変換がG(t)であることを示しています。
sinc関数
http://ja.wikipedia.org/wiki/Sinc%E9%96%A2%E6%95%B0
は偶関数なので、上の式の関係が成立します。
奇関数でも変換の符号が変わる位でスペクトルの絶対値が変わるわけではありません。
また、フーリエ変換対の定義式は、3通り程ありますが、途中の変換で定数倍の係数がかかりますが、波形やスペクトルの形状が変わるわけではありません。

フーリエ変換とフーリエ逆変換は双対関係にあるからです。
つまり時間t領域とf(ω=2πf)領域を入れ替えても数式的に
フーリエ変換とフーリエ逆変換の関係が成り立つ関係にあると言うことです。

詳細は以下URLをご覧下さい。
http://laputa.cs.shinshu-u.ac.jp/~yizawa/InfSys1/basic/chap4/index.htm
http://www12.plala.or.jp/ksp/fourieralysis/Fourier/
http://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B

>なぜ逆フーリエではなく、フーリエが矩形波となるので...続きを読む

Aベストアンサー

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると
   両方に(b2-b1)をかけた式で a1(b2-b1)-(a1b2-a2b1)=-a1b1+a2b1
   =b1(-a1+a2)>0 となるので a1>(a1b2-a2b1)/(b2-b1) となります
   したがって、ここでの解は(1)の解でよいことになります。
2.a1≦x<a2 のとき・・・x-a1は正、x-a2は負だから
   b2(x-a1)>-b1(x-a2)
   これを解いて、x>(a1b2+a2b1)/(b1+b2)
   ここで、1.のときと同様にして (a1b2+a2b1)/(b1+b2) とa1,a2
   との大小関係を考えると、省略しますが、
     a1<(a1b2+a2b1)/(b1+b2)<a2 となり、
   ここでの解は (a1b2+a2b1)/(b1+b2)<x<a2・・・(2)
3.a2≦x のとき・・・x-a1もx-a2も正だから
   b2(x-a1)>b1(x-a2)
   これを解いて x>(a1b2-a2b1)/(b2-b1)
   同様に a2 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると、また
   省略しますが a2>(a1b2-a2b1)/(b2-b1) となり
   ここでの解は a2≦x・・・(3)

以上、(1)~(3)が解となります。
各場合について、数直線をかいて考えるといいでしょう。

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (...
続きを読む

Q高速フーリエ変換とフーリエ変換の違い

高速フーリエ変換とフーリエ変換の違いについて教えて下さい。
高速フーリエ変換は何か近似を行うことによって、計算速度を速くしているのでしょうか?
もし、何かの極限で出てくる結果が違う場合などがあれば教えて下さい。

Aベストアンサー

>出てくる結果は全く同じだということなのでしょうか?
その通りです。

Q数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交
[(2)の解]
この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して,
a_0=2/π∫[0..π]f(x)dx
は上手くいったのですが
a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから
2/π∫[0..π]f(x)cos(nx)dxに変形できません。
どのようにして変形するのでしょうか?

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1...続きを読む

Aベストアンサー

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでしょうか?
質問の文に
『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。』
とあったのでf(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)と表せる前提で話をして良いのかなと思ったのです。
また、f∈R[0,π]の関数を周期[-π,π]で展開することも可能なので一概に周期[0,π]とも言えないと思うのです。
(ただし、その場合にも偶関数として展開、奇関数として展開などの適当な前提は要りますが)


どうやら私が質問や問題の内容を推測して回答してしまったのがよくなかったようですね。
今回は補足要求と言うことにしておきます。

・今回の問題(2)の題意は
  fがa_0/2+Σ[n=1..∞]a_ncos(nx)で書けることを示すことですか?
それとも
  f(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)とするとa_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dxとなることを示すことですか?

・『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数』とはこの場合どういう意味でしょう?把握してらっしゃいますか?

・fを展開する際の周期ですが本当に[0,π]ですか?
[0,π]ではcos(nx)とsin(mx)が直交しないですし、
f(x)=Σ{b_n*sin(nx)}と奇関数として展開するしか出来ない気がするんですが。

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでし...続きを読む

Q逆フーリエ変換における位相の考え方

http://power.ee.sophia.ac.jp/~miyatake/lecture/m …

上記のHPを参考に逆フーリエ変換の勉強をしていました。

勉強の結果、周波数とフーリエ振幅さえわかれば、逆フーリエ変換可能と思いました。
では、位相はどのように使うのですか?
もしくは、逆フーリエ変換では位相はあまり気にしなくても良いのでしょうか?

わかる方がいましたら教えていただけないでしょうか?
よろしくお願いします。

Aベストアンサー

このフーリエF(ω)振幅はよく考えると分かるかと思いますが,複素数です.
複素数は一般的に位相を含んでいます.つまり
F(ω)=|F(ω)|exp(j*arg(F(ω)))
と言うことです.絶対値の部分が振幅に相当して,expの部分が位相に相当します.
以上から逆フーリエ変換でも,位相は必要な要素になります.

お分かりになりましたでしょうか.

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Qアナログ信号とフーリエ変換

デジタル信号の周波数分析として離散フーリエ変換があります。そして、アナログ信号の周波数分析としてフーリエ変換と考えていました。またアナログ信号を離散フーリエ変換で考える方法もあり、アナログ信号をサンプリングすることで離散フーリエ変換で考えることが出来ると考えています。

ですが、「アナログ信号の周波数分析にフーリエ変換を使うと定義されている」という考え方は間違いであると言われました。
何が違うのか分かりません。よく分からないので詳しく教えてください。

Aベストアンサー

国語の話をしても建設的ではない

離散変換は
サンプリングしてのフーリエ変換なので折り返しがでる
また離散変換は
周期関数にたいするものなので周期関数で近似できる関数で無ければならない

つまり、
離散変換は
周期関数のサンプリング信号を対称にするものであり
周期関数で近時できないものやサンプリング時の折り返しが問題になる場合にはNGである

ただしサンプリングの問題はサンプリング周波数をあげれば解決できる場合もある

しかしいくら周期を長くしてもうまくない場合にはNG

Q|x-1|+|x|+|x+1|<6を解いたら

|x-1|+|x|+|x+1|<6を解いたら

-2<x<2になりました

誰かといてこたえを教えてください

Aベストアンサー

それでいい。
こゆのは、場合分けして絶対値の無い式にする。

|x-1| + |x| + |x+1| < 6

⇔( x < -1 かつ -(x-1) -(x) -(x+1) < 6 )または
 ( -1 ≦ x < 0 かつ -(x-1) -(x) +(x+1) < 6 )または
 ( 0 ≦ x < 1 かつ -(x-1) +(x) +(x+1) < 6 )または
 ( 1 ≦ x かつ +(x-1) +(x) +(x+1) < 6 )

⇔( x < -1 かつ x > -2 )または
 ( -1 ≦ x < 0 かつ x > -4 )または
 ( 0 ≦ x < 1 かつ x < 4 )または
 ( 1 ≦ x かつ x < 2 )

⇔( -2 < x < -1 )または
 ( -1 ≦ x < 0 )または
 ( 0 ≦ x < 1 )または
 ( 1 ≦ x < 2 )

⇔ -2 < x < 2


人気Q&Aランキング

おすすめ情報