出産前後の痔にはご注意!

積分領域の決め方がよくわかりません。
問題文で
f(x,y)=x+y
D={(x,y)l y-x≧0,2x+y≧0,x+y≦1}が与えらています。
これを計算するときに積分領域が
D = {(x, y)| -1≦x≦0,-2x≦y≦1-x}∪{(x,y)l 0≦x≦1/2,x≦y≦1-x}
となるんですが、どっから-1≦x≦0、-2x≦y≦1-x、0≦x≦1/2、x≦y≦1-xなどの値がでてきたのかもよくわかりませんし、領域同士の和集合になってるのがよく理由がわかりませんでした。

http://webmath.ecip.osakac.ac.jp/webMathematica/ …

でも調べてるうちに見つけたこのサイトに領域をうちこんだ結果できる図形(三角形)の内部、つまりy-x≧0,2x+y≧0,x+y≦1を満たす領域が積分領域だということなんだなと思い、この図形を見ればいいんだなと思いました。
そしたらxについての範囲、-1≦x≦0と0≦x≦1/2については理解できたとおもうんですが、yについての範囲がわかりません。
0≦y≦2、0≦y≦1となるんじゃないのか?と思いましたが実際は、-2x≦y≦1とx≦y≦1-xみたいですし・・・。
どうしてyはこんな領域になるんでしょうか?

A 回答 (1件)

うまくリンク貼れてないみたいですよ。



あとなぜ0≦y≦2、0≦y≦1にならないか、ですが、
実際はこの範囲になるのですが、yはxによって変化します。
そしてこの後重積分するにはこの要素は不可欠です。そのためにyをxで対応させて表記します。
そのときに図で考えると、領域Dは三角形ですが、
x軸に対して、半分で分けて考えます。
このとき左側は-1≦x≦0なわけですが、yについて考えるとy=-2xより上でy=1+xより下なので、これを式で表すと、-2x≦y≦1+xとなるわけです。同様に右側も考えられます。

図を用いて説明しないとわかりにくいかも知れません。すいません。
    • good
    • 0
この回答へのお礼

ご解答ありがとうございます!!
なるほど!!納得できました!!
すっきりしました・・・。
本当にありがとうございました!!

お礼日時:2008/01/30 10:10

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2重積分の変数変換の範囲についてです。

2重積分の変数変換の範囲についてです。

∬f(x,y)dxdy=∬f(φ(u,v),ψ(u,v))|J|dudv
の式を用いて解く問題で、この式の使い方はわかるのですが、u,vの範囲の決め方がよくわかりません。

たとえば、
x=u(1+v),y=v(1+u)
0≦x≦2,0≦y≦x
となっていたら、
0≦u(1+v)≦2,0≦v(1+u)≦u(1+v)
を解けばいいんですよね?

答えでは、v≦u≦2/(1+v),0≦v≦1となっていました。
uの範囲は理解できますが、vの範囲(v≦1の部分が)がどうしてこうなるのかがわかりません。

同様にx=u+v,y=u-v
0≦x≦2,0≦y≦2-x

0≦u≦1,-u≦v≦u
のvの範囲(v≦uの部分が)がどうしてこうなるのかわかりません。

教えてください。

Aベストアンサー

>0≦u(1+v)≦2,0≦v(1+u)≦u(1+v)
>を解けばいいんですよね?
その通り。でも

>答えでは、v≦u≦2/(1+v),0≦v≦1となっていました。
は間違い。

uをx軸(横軸)、vをy軸(縦軸)にとって(u,v)の存在領域を図示すれば
積分領域が明確に分かるかと思います。
正解:「v≦u≦2/(1+v),0≦v≦1」及び「(2/u)-1≦v≦u,-2≦u≦-1」

>同様にx=u+v,y=u-v
>0≦x≦2,0≦y≦2-x
>で
>0≦u≦1,-u≦v≦u
>のvの範囲(v≦uの部分が)がどうしてこうなるのかわかりません。
0≦u+v≦2,0≦u-v≦2-u-v
をuv平面に描くと領域が図の斜線の領域になります。式で書けば
0≦u≦1,-u≦v≦u

Q2重積分の積分区間

次の問題の積分区間の取り方がわかりません。

領域D={(x,y)|0≦x≦1,0≦y≦x}のとき、
f(x,y)=x+2yの重積分
∬Df(x,y)dxdy
を求めよ。

yで積分してからxで積分するやり方だと、
前者の積分区間が0→x
後者の積分区間が0→1
となり、これはまあなんとなくわかるのですが、
xで積分してからyで積分するやり方だと、
前者の積分区間がy→1
後者の積分区間が0→1
となるようなのですが、どうしてこうなるのでしょうか。

この積分区間の取り方がよくわからないゆえ、
他の問題も全然解けません。
どなたか解説をお願いします。

Aベストアンサー

「y で積分してから x で積分する」ときの「y で積分」するところでは x を固定して考える. 領域 D において, 「x をある値で固定したときの y の変域」はわかりますか? 「なんとなく」じゃダメですよ.
同様に「x で積分してから y で積分する」ときの「x で積分する」ところでは y を固定して考える. だから, 領域 D において「y をある値で固定したときの x の変域」を考えればいい. 今のような場合なら, 普通は横軸に x を, 縦軸に y をとって図示するので, 「y をある値で固定したときの x の変域」は「あるところで横軸をひいたときの D との共通部分」になる.

このくらい簡単な領域なら, 実際に絵にすればわかるはずなんだけどなぁ....

Q重積分について教えてください。

重積分の回答を教えてください。

次の重積分を極座標変換にて求めよ。また、積分の領域を図示せよ。

1、∬D(-x^2-y^2+1)dxdy, D={(x,y)|x^2+y^2<=1}
2、∬D(1/(x^2+y^2+2))dxdy, D={(x,y)|x^2+y^2<=1,x>=0,y>=0}

お手数ですが、回答と積分領域の図をお願いいたします。

Aベストアンサー

1
積分領域Dは原点中心、半径1の円の内部(円の境界線を含む)ですから自分で図を描いてください。

x=rcosθ,y=rsinθとおき置換積分する。
D ⇒ E={(r,θ)|0≦r≦1,-π≦θ≦π}
∬_D (-x^2-y^2+1)dxdy
=∬_E (1-r^2)|J|drdθ
=∫[-π,π]dθ∫[0,1](1-r^2)rdr
=2π∫[0,1](r-r^3)dr

あとは高校の基礎的な積分なのでご自分でやってください。

=π/2


積分領域Dは原点中心、半径1の円の内部で第一象限の部分「1/4円」(境界線を含む)ですから自分で図を描いてください。

x=rcosθ,y=rsinθとおき置換積分する。
D ⇒ E={(r,θ)|0≦r≦1,0≦θ≦π/2}
∬_D 1/(x^2+y^2+2)dxdy
=∬_E 1/(r^2+2)|J|drdθ
=∫[0,π/2]dθ∫[0,1] 1/(r^2+2) rdr
=(π/2)∫[0,1](1/2)(r^2)'/(r^2+2)dr

あとは合成関数の積分公式を適用するだけなのでご自分でやってください。

=(π/4)ln(3/2)

1
積分領域Dは原点中心、半径1の円の内部(円の境界線を含む)ですから自分で図を描いてください。

x=rcosθ,y=rsinθとおき置換積分する。
D ⇒ E={(r,θ)|0≦r≦1,-π≦θ≦π}
∬_D (-x^2-y^2+1)dxdy
=∬_E (1-r^2)|J|drdθ
=∫[-π,π]dθ∫[0,1](1-r^2)rdr
=2π∫[0,1](r-r^3)dr

あとは高校の基礎的な積分なのでご自分でやってください。

=π/2


積分領域Dは原点中心、半径1の円の内部で第一象限の部分「1/4円」(境界線を含む)ですから自分で図を描いてください。

x=rcosθ,y=rsinθとおき置換積分する。
D ⇒ E={(r,θ)...続きを読む

Q極座標による重積分の範囲の取りかた

∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2)
を極座標でに変換して求めよ。

という問題で、

x = rcosθ、y = rsinθ とおくのはわかるのですが、
rとθの範囲を、どのように置けばいいのかわかりません。


x^2+y^2
= (rcosθ)^2 + (rsinθ)^2
= r^2{(cosθ)^2 + (sinθ)^2}
= r^2< = π^2

とした後、-π =< r =< π としたのですが、合っているのでしょうか?
rとθの範囲の取りかたを教えてください。お願いします。

Aベストアンサー

Dは原点中心の半径πの円盤なので、
0≦r≦π、0≦θ<2πです。(-π<θ≦πでもよいです。
等号もどっちにつけても良いです)

ちなみに極座標ではr≧0です。

極座標は原点からの距離rと、x軸とのなす角θを使った点の表示
方法です。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q重分積分の極座標変換について

どうして∬dxdy=∬drdθかけるrなのでしょうか
なぜrをかけるのかわかりません どうやら行列をつかったりする必要があるらしいのですがちょっとわかりずらいです  わかりやすく教えてもらえないでしょうか?

Aベストアンサー

■各座標系の面積素(微小な面積を表す成分要素)dSがどう表されるかを考えて見てください。
直交XY座標では微小な面積素dS=dxdyで表されます。
横幅dx,高さdyの長方形の面積はその積dxdyで表されるので
dS=dxdy
ということです。
一方、極座標系では
半径r方向の微小な長さの幅dr,偏角θ方向(円弧方向)の微小な長さはrdθで表されます。従って極座標(r,θ)における面積素dSの微小な面積は
dS=(dr)×(rdθ)=rdrdθ
となります。
なので
∫dS=∬dxdy=∬rdrdθ
となるのです。

●数式で扱う場合はヤコビ行列を使って座標変換ができます。
http://ja.wikipedia.org/wiki/%E9%96%A2%E6%95%B0%E8%A1%8C%E5%88%97%E5%BC%8F
この中の円座標の所が二次元の極座標のヤコビアン|J|の計算で
|J|=rが出てきますのでこれを使って変数変換
dxdy=|J|drdθ=rdrdθ
をします。
実際の計算は
x=rcosθ,y=rsinθ
から
ヤコビ行列Jを求めて
J=
(∂x/∂r,∂x/∂θ)
(∂y/∂r,∂y/∂θ)
=
(cosθ,-rsinθ)
(sinθ,rcosθ)
これからヤコビアン|J|を求めれば
|J|=
|cosθ,-rsinθ|
|sinθ, rcosθ|
=r(cos^2θ+sin^2θ)=r
となりますので機械的に
dxdy=|J|drdθ=rdrdθ
と変数変換すればいいことになります。

■で考えるか、●で考えるかは自由です。

直感的には面積素で考える■の方が覚えやすいかと思います。
XY座標から極座標への変換ではなく、もっと複雑な重積分(二変数、三変数の多重積分など)の変数変換では、ヤコビアンを使った方が間違いないでしょう。

■各座標系の面積素(微小な面積を表す成分要素)dSがどう表されるかを考えて見てください。
直交XY座標では微小な面積素dS=dxdyで表されます。
横幅dx,高さdyの長方形の面積はその積dxdyで表されるので
dS=dxdy
ということです。
一方、極座標系では
半径r方向の微小な長さの幅dr,偏角θ方向(円弧方向)の微小な長さはrdθで表されます。従って極座標(r,θ)における面積素dSの微小な面積は
dS=(dr)×(rdθ)=rdrdθ
となります。
なので
∫dS=∬dxdy=∬rdrdθ
となるのです。

●数式で扱う場合はヤコビ行列を使...続きを読む

Q接平面の式

曲面z=3-x^2-y^2 の点(1,1,1)における接平面の式は
どのように求めればいいのでしょうか?

また、その接平面から距離が√5となる平面の式も
求めたいのです。
よろしくお願いします。

Aベストアンサー

参考程度に

「曲面z=3-x^2-y^2 の点(1,1,1)における接平面の式は
どのように求めればいいのでしょうか?」

接平面の方程式がいりますね。
z=f(xy), 点(a,b,c) の時の 接平面の方程式は、
z-c=fx'(a,b)(x-a)+fy'(a,b)(y-b)
ですね。
z=3-x^2-y^2 の点(1,1,1)の場合は、
c=1, {∂f(xy)/∂x}(1,1,1)=-2x=-2
{∂f(xy)/∂y}(1,1,1)=-2y =-2
z-1=-2(x-1)-2(y-1)=-2x-2y+4
z=-2x-2y+5
ということですかね。

Qe^(-x^2)の積分

e^(-x^2)の積分はどうやったらよいのでしょうか?
どなたか分かる方、よろしくお願いします。

eは自然対数の底でe^(-x^2)=exp{-x^2}

Aベストアンサー

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
だから、e^-(x^2)を積分する代わりにe^-(x^2+y^2)を積分してその√を取れば解が得られるという論法を利用するんですね。
四角形の領域で
I=∫[x,y:0→a]e^-(x^2+y^2)dxdy
を積分するにはちょっとなんで、四角形に接する大小の円で挟み撃ちを考えるんですね。
半径aの(1/4)円では、
極座標変換して、(x^2+y^2)=r^2, dxdy=rdrdθ
=∫[0→a]e^-(r^2)dr∫[0→π/2]dθ
=(1/2)(1-e^-a^2)(π/2)=(π/4)(1-e^-a^2)
同様に、半径√2aの(1/4)円では、
=(π/4){1-e^-(2a^2)}
だから、
x:0→a
√{(π/4)(1-e^-a^2)}<∫[0→a]e^-(x^2)dx
<√{(π/4){1-e^-(2a^2)}}
が回答ですね。これ以上は数値表を参照ですね。
a→∞ であれば、
∫[0→∞]e^-(x^2)dx=(√π)/2
が回答になりますね。
広域積分でも検索すれば参考になるかも。

ガウス分布に使いますね。
やりかたですね。一般的なものを参考程度までに、

xy座標の第一象限で原点を通る一辺aの正方形
と正方形に接する半径aの(1/4)円とr半径√2aを考えるんですね。
正方形の領域□でe^-x^2 をx方向に積分すると、
∫[0→a]e^-x^2dx
正方形の領域だからe^-y^2 をy方向に積分しても
同じ値になりますね。だから
∫[0→a]e^-x^2dx=∫[0→a]e^-y^2dy
ということは、x,yは独立に考えられるので、
∫[0→a]e^-(x^2+y^2)dxdy
={∫[0→a]e^-x^2dx}^2
という関係が出ますね。
...続きを読む

Q長さの単位であるAの上に丸がついた記号は何mですか。

こんばんは。Aの上に丸がついた単位をよく見ますが、これは「オームストローム」のことでしょうか。違うのであればこの単位をメートルに直したときどのような値をとるのか教えてください。

Aベストアンサー

この答えでいいのでしょうか。

☆Å(オングストローム/angstrom) 
長さの補助単位。
10の-10乗=百億分の1メートル。電磁波の波長測定や、原子物理学・結晶学・分子学などで用いる。
記号 Å または A で表す。
スウェーデンの物理学者オングストレームの名にちなむ。

参考URL:http://www.sun-inet.or.jp/~nao2/jiten/sonota.htm

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/