利用規約の変更について

r=(x^2+y^2+z^2)^1/2
A=uI/4π∫c ds/r(Aはベクトル、上に→がついてます)

のとき、rotA(このAもベクトル、上に→がついてます)を求めよ。

という問題があるのですが、どこから手を付けて解いていけば良いのかわかりません。
rotAの定義はわかるんですが、実際どのようにしてこの問題を解いていけば良いのでしょうか?

わかる方居られましたら、ぜひ教えてください。お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

数学のほうに回答したけど、


こっちのほうがいいなら
コピーぺ
形からして、Aは定常電流Iによるベクトルポテンシャル
の原点での値のよう。
divA=0
rotA=B
rotB=μi (iはベクトル)
→ΔA=-μi(x)
の解
A(x)=μ/(4π)∬∫ i(x')/|x-x'|d^3x
でx=0だと、
A=μ/(4π)∬∫ i(x')/rd^3x
ここでiはベクトルで位置の関数。
閉回路に一様電流Iが流れているときは
断面方向に積分できるので、閉曲線に沿っての線積分のみがのこり、
A=μI/(4π)∫_c 1/rds
でsは線素ベクトル。
という式でしょう。
原点周りに、閉回路があるとき、原点からの距離rについて 1/rに回路にそった線素ベクトルをかけて線に沿って積分すると、
原点でのベクトルポテンシャルが計算できる。
ただ、Aに原点を代入すると、rotAは計算できなくなるので、
やはり、
x=(x,y,z) x'=(x',y',z')  左辺のx、x’はベクトル
r^2=(x-x')^2+(y-y')^2+(z-z')^2
A(x)=∫_c 1/rds(sはベクトル)
で、
B=rotAは
B=μI/(4π)∫_c ds×(x-x')/r^3  
ds x x' はベクトル ×は外積
原点の値なら、(x=(0,0,0)にする。)

rotAの定義にしたがって、Bの成分を計算する。
    • good
    • 0
この回答へのお礼

こちらの方までチェックして、回答までして頂き本当にありがとうございます!

お礼日時:2008/02/07 14:31

rotA(∇A)という記載は、∇×Aという理解でいいでしょうか?



∇×A=(εijk∂uk/∂uj)ei ここでεは交代記号でeiは基底ベクトルです。
rのみがx,y,zの関数であれば、それを各成分i,j,kで偏微分したベクトルとなるのでは。

行列式でかくと(上手く表示されないので各要素をコンマで区切ってあります。また以下3行を1つの行列式と考えて下さい。
| x, y, z |
|u/∂ux, u/∂uy, u/∂uz|
| r, r, r |
ここで1行目のx,y,zはベクトル。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
なるほど…

お礼日時:2008/02/07 14:29

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QrotA(∇A)の求め方で困っています

r=(x^2+y^2+z^2)^1/2
A=uI/4π∫c ds/r(Aはベクトル)

のとき、rotA(Aはベクトル)を求めよ。

という問題があるのですが、どこから手を付けて解いていけば良いのかわかりません。
rotAの定義はわかるんですが、実際どのようにしてこの問題を解いていけば良いのでしょうか?

わかる方居られましたら、ぜひ教えてください。お願いします。

Aベストアンサー

形からして、Aは定常電流Iによるベクトルポテンシャル
の原点での値のよう。
divA=0
rotA=B
rotB=μi (iはベクトル)
→ΔA=-μi(x)
の解
A(x)=μ/(4π)∬∫ i(x')/|x-x'|d^3x
でx=0だと、
A=μ/(4π)∬∫ i(x')/rd^3x
ここでiはベクトルで位置の関数。
閉回路に一様電流Iが流れているときは
断面方向に積分できるので、閉曲線に沿っての線積分のみがのこり、
A=μI/(4π)∫_c 1/rds
でsは線素ベクトル。
という式でしょう。
原点周りに、閉回路があるとき、原点からの距離rについて 1/rに回路にそった線素ベクトルをかけて線に沿って積分すると、
原点でのベクトルポテンシャルが計算できる。
ただ、Aに原点を代入すると、rotAは計算できなくなるので、
やはり、
x=(x,y,z) x'=(x',y',z')  左辺のx、x’はベクトル
r^2=(x-x')^2+(y-y')^2+(z-z')^2
A(x)=∫_c 1/rds(sはベクトル)
で、
B=rotAは
B=μI/(4π)∫_c ds×(x-x')/r^3  
ds x x' はベクトル ×は外積
原点の値なら、(x=(0,0,0)にする。)

rotAの定義にしたがって、Bの成分を計算する。

形からして、Aは定常電流Iによるベクトルポテンシャル
の原点での値のよう。
divA=0
rotA=B
rotB=μi (iはベクトル)
→ΔA=-μi(x)
の解
A(x)=μ/(4π)∬∫ i(x')/|x-x'|d^3x
でx=0だと、
A=μ/(4π)∬∫ i(x')/rd^3x
ここでiはベクトルで位置の関数。
閉回路に一様電流Iが流れているときは
断面方向に積分できるので、閉曲線に沿っての線積分のみがのこり、
A=μI/(4π)∫_c 1/rds
でsは線素ベクトル。
という式でしょう。
原点周りに、閉回路があるとき、原点からの距離rについて 1/rに回路...続きを読む

Qベクトル場の面積分に関してです

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

Aベストアンサー

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑...続きを読む

Q単位法線ベクトルの問題なんですが。。。

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

Aベストアンサー

未消化のgrad fを使わなくても以下のように出来ます。
いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14

Q電場のエネルギー密度と静電エネルギー

電磁気学の質問です。

電場のエネルギー密度 1/2 ε_0 E^2 を空間の全体積で積分すると
静電エネルギーになるという式変形は追えるのですが、
この2つの具体的な関係がよくイメージ出来なくて困っています。
静電エネルギーというと、コンデンサーにたまるエネルギーで、
導体を帯電する時の仕事と理解してるのですが、
何かこれだけでは足りない気がしていて…。

もし、よろしければ、どなたかアドバイスいただけませんか?
よろしくお願いします。

Aベストアンサー

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味を考えてみると、電荷Qの導体自身が静電エネルギーUを持っている物だと考えていたのに、その周りの空間(場)にエネルギーが蓄えられている、という見方も出来るのです。
もっと言えば、電荷eがあるとその周りの空間にある種の歪み(電場)が生じ、その歪みがエネルギーを蓄えていると考えられるわけです。

同じように磁場についても、電荷が動けばその周りの空間に歪み(磁場)が生じ、場自身がエネルギー密度1/2*μ_0 B^2 を持つことが分かります。
磁場や電場による力についても色々式をいじくっていくとマックスウェルの応力と呼ばれる空間(場)に力が働くという表示も得られたりします。

結局何が言いたいのかというと、電磁気学というのは場という考え方に基づいて話を展開することができ、その立場の元では静電エネルギーというのは場そのものがエネルギーを蓄えていると考えられると言うことです。

>静電エネルギーというと、コンデンサーにたまるエネルギーで、
>導体を帯電する時の仕事と理解してるのですが、
確かにその通りです。
コンデンサーに限らず、電荷Qを持っている導体に対しても無限遠との電位差をVとして静電容量C=Q/Vと言う物を定義でき、静電エネルギーUはU=1/2*QVとなります。その物体の周りの空間を微少な領域に分割し、ガウスの法則を適用して計算をガリガリ進めるとUは1/2*ε_0 E^2の全空間積分と表せます。(導体であれば内部でEは0なので、導体を除いた空間の積分)
この物理的意味...続きを読む

Qrotの計算について

添付した画像の計算方法を教えてください。
途中経過も詳しくご教授いただけると助かります。
よろしくお願いいたします。

Aベストアンサー

ベクトルA↑(Ax,Ay,Az)に対してrotを作用させるということは

B↑=(Bx,By,Bz)=rot(A↑)

Bx=∂Az/∂y-∂Ay/∂z

By=∂Ax/∂z-∂Az/∂x

Bz=∂Ay/∂x-∂Ax/∂y

を求めることです。

問題の2次元ベクトルのrotは面に巣直な方向、すなわちz方向のベクトルを求めることになります。

これは上の演算から自動的に出てきます。v↑(vx,vy,0)とすると

Bx=∂vz/∂y-∂vy/∂z=-∂vy/∂z=-∂(3x-5y)/∂z=0

By=∂vx/∂z-∂vz/∂x=∂vx/∂z=∂(2x-4y)/∂z=0

Bz=∂vy/∂x-∂vx/∂y=∂(3x-5y)/∂x-∂(2x-4y)/∂y=3+4=7

答え

rot(v↑)=(0,0,7)

Qgrad、div、∇

物理なのか、数学なのかという感じなのですが・・・。

まず、grad、div、∇について、分かりやすく教えていただけませんか?。
それから、たとえば、圧力pがあったとして、「grad p」の物理的意味を教えて頂けるとうれしいです。

数学も物理も苦手なので、詳しく分かりやすく教えて頂けると幸いです。

よろしくお願い致します。

Aベストアンサー

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる場所から
水平方向に 10km 動いたってあまり気圧は変わりませんが,
空の方向に 10km 動けばエベレスト
(最近は,チョモランマとかサガルマータとか呼ぶかな)
より高くなって,気圧はうんと下がっちゃいます.
で,y,z 方向には全く動かず,x 方向にだけ動いたとします.
このときの p の変化の割合は,偏微分を使って ∂p(x,y,z) / ∂x ですね.
同様に,x,z を固定して y だけ動かせば,変化の割合は ∂p(x,y,z) / ∂y,
x,y を固定して z だけ動かせば,変化の割合は ∂p(x,y,z) / ∂z.
つまり,以上の3つの偏微分で変化の様子がわかります.
ばらばらに3つ扱ってもいいですが,
ベクトル表示にして
x 成分が ∂p(x,y,z) / ∂x,
y 成分が ∂p(x,y,z) / ∂y,
z 成分が ∂p(x,y,z) / ∂z,
というベクトルにしたのが grad p です.
ベクトルにしておくと,
表示が簡単なことの他にもいろいろ便利なことがあります.

なお,creol さんの回答ははちょっと混乱されているようです.
p は圧力(の強さ)そのもの,grad p は p の変化の割合です.
その場所での圧力は p です.

div は,creol さんも書かれているように,発散です.
極限値が発散する,などの発散とは全く違いますので,念のため.
例えば,水流中に仮想的な直方体を考えてください.
水流は流れの方向がありますからベクトル量ですね.
で,場所にもよりますから,j(x,y,z) と書きましょう.
テキストファイルじゃうまく書けないですが,j はベクトルです.
この直方体の面を通って単位時間あたりに流れ出ていく水量(流出量)が
本質的に div j です(本当はちょっと修正がいる,後述).
直方体の6面分全部考えてくださいよ.
水量ですから,スカラー量ですね.
え? 流出量ばかりじゃ直方体の中の水がどんどん減っちゃう?
ええ,それでいいんです.
つまり,div j は直方体の中の水量ρ
(スカラー量,本当は密度ですが)
の単位時間あたりの減少分を表しています.
式で書くなら, div j = - ∂ρ / ∂t です.
右辺のマイナスは減少だからついているんです.
ふつうの水流(例えば,川なんか)なら?
div j の計算のときに,流出量をプラスとして考えているので,
入ってくる分(流入量)はマイナスで考えてください.
ごくふつうに川が流れているとき,
上流の方から流入量と,
下流側への流出量は同じですよね.
そうすると,プラマイうち消して,div j = 0,
直方体の中の水量は時間変化しません.

え,直方体の大きさ?
あ,それはですね,十分小さくとってください.
小さくとれば,流入量も流出量も小さくなっちゃう?
実は,正味の流出量を直方体の体積で割って
直方体を小さくした極限が本当の div j です
ρが本当は密度だと言ったのもこういうところと関係があります.

微分で表現すれば
div j(x,y,z)
= ∂jx(x,y,z) / ∂x + ∂jy(x,y,z) / ∂y + ∂jz(x,y,z) / ∂z
です.
jx は j の x 成分,他も同様.


∇の記号は creol さんの書かれているとおり.
読み方は「ナブラ」(nabla) です.
ちょっと変わった名前ですが,
竪琴(形が似ている)のギリシヤ語名から来ています.

grad,div,と並んでベクトル解析でよく出てくるものに
rot (rotation,回転)があります.

わかりやすく,ということで回答してみました.

ふつうの関数 f(x) では,x を動かしたとき,
f(x)の変化の様子が f'(x) = df(x)/dx で表されますね.
これの3次元版が grad と思えばOKです.

例えば,圧力 p なら,それが一般には場所によって変わります.
x,y,z の3座標で場所が指定できますから,p は x,y,z の関数で
p(x,y,z) と書けばよろしい.
そこで,場所を動かしたとき,p の変化の様子が知りたいとします.
でも,動かすと言ったって3次元なんだから,方向を決めないと困ります.
そりゃ,そうですよね.
大気圧考えてみれば,今いる...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Qベクトルポテンシャルを求める問題

ベクトル場F=(x+3y)i+(y-2z)j+(x-2z)kのベクトルポテンシャルの求め方が分かりません。どなたか教えてください。

Aベストアンサー

i,j,k が標準基底で、
点 xi+yj+zk でのベクトル場の値が (x+3y)i+(y-2z)j+(x-2z)k
ってことですよね?

ベクトルポテンシャルの存在条件↓
http://www.moge.org/okabe/temp/elemag/node35.html
存在する場合の求め方(公式)↓
http://hooktail.sub.jp/vectoranalysis/VectorPotential/

この公式によれば、
(yz-z^2)i+(-xz-3yz+x^2/2-2zx)j
が、ベクトルポテンシャル(のひとつ)として挙げられます。


人気Q&Aランキング

おすすめ情報