【最大10000ポイント】当たる!!質問投稿キャンペーン!

[問]同時確率密度関数f(x1,x2)=
12x1x2(1-x2) (0<x1<1,0<x2<1の時)
0 (その他の時)
における確率変数X1とX2が独立である事を示せ。

が示せず困っています。
どのようにして示せますでしょうか?

一応,定義は下記の通り,調べてみました。
確率空間(Ω,F,P)(Fはσ集合体,(F上の関数)Pを確率とする)
そしてΩからR^dへの写像を確率ベクトルという。
この確率空間(Ω,F,P)と別の集合Sがある時,Sの値をとるΩの上の確率変数Xが与えら
れた時,
B_X:={E⊂S;X^-1(E)∈F}とすると新しい確率空間(S,B_X,P_X)が得られる。
このP_Xを確率分布といい,特にXがX=(X1,X2)という確率ベクトルになっている時,
P_XをX1,X2の同時分布という。
独立とは∀A1,A2∈Fに於いて,P(X1∈A1,X2∈A2)=P(X1∈A1)P(X2∈A2)が成り立つ事で
ある。

「確率分布関数 f(x,y)において、
f1(x)=∫[-∞,∞]f(x,y) dy
f2(y)=∫[-∞,∞]f(x,y) dx
と定義すると、確率変数x,yが独立であることの必要十分条件は
f(x,y)=f1(x)f2(y)」
と思いますので

f1(x1)=∫[-∞~∞]12x1x2(1-x2)dx2
=∫[-∞~∞](12x1x2-12x1x2^2)dx2
=[6x1x2^2-4x1x2^3]^∞_-∞

f2(x2)=∫[-∞~∞]12x1x2(1-x2)dx1
=∫[-∞~∞](12x1x2-12x1x2^2)dx2
=[6x1^2x2-6x1^2x2^2]^∞_-∞

と求めましたがこれから先に進めません。どのようにすればいいのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

>f1(x1)=∫[-∞~∞]12x1x2(1-x2)dx2


f1(x1)=∫[-∞,∞]f(x1,x2) dx2=∫[0,1]f(x1,x2) dx2
=∫[0~1]12x1x2(1-x2)dx2
>=∫[-∞~∞](12x1x2-12x1x2^2)dx2
=12x1∫[0~1](x2-x2^2)dx2
>=[6x1x2^2-4x1x2^3]^∞_-∞
=2x1*[3x2^2 -2x2^3] [x2:0~1]
=2x1*(3-2)=2x1 (0<x1<1)
f1(x1)=0 (0<x1<1以外)

>f2(x2)=∫[-∞~∞]12x1x2(1-x2)dx1
f2(x2)=∫[-∞~∞]1f(x1,x2)dx1=∫[0~1]1f(x1,x2)dx1
=∫[0~1]12x1x2(1-x2)dx1
>=∫[-∞~∞](12x1x2-12x1x2^2)dx2
=12x2(1-x2)∫[0~1] x1dx1
>=[6x1^2x2-6x1^2x2^2]^∞_-∞
=6x2(1-x2)[x1^2] [x1:0~1]
=6x2(1-x2) (0<x2<1)
f2(x2)=0 (0<x2<1以外)

f1(x1)f2(x2)=2x1*6x2(1-x2)
=12x1x2(1-x2)=f(x1,x2) (0<x1<1,0<x2<1の時)
f1(x1)f2(x2)=0=f(x1,x2)(0<x1<1,0<x2<以外の時)
    • good
    • 0
この回答へのお礼

有難うございます。
これで漸く解けました。練習してこのやり方を習得したいと思います。

お礼日時:2008/03/12 10:10

f1, f2を求める際の積分範囲が違うのではないですか?


(0<x1<1,0<x2<1の時)
という条件があるので、これを付け加えればf1,f2がきっちり計算できると思います。で、最終的に f(x1,x2) = f1(x1) * f2(x2) の形になっているのであれば独立である、ということです。
    • good
    • 0
この回答へのお礼

有難うございます。
これで漸く解けました。練習してこのやり方を習得したいと思います。

お礼日時:2008/03/12 10:11

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード


人気Q&Aランキング