【先着1,000名様!】1,000円分をプレゼント!

マイクロピペットを使って測定する実験を行ったのですが、標準誤差、標準偏差といった言葉の意味が分かりません。分かりやすく教えていただけないでしょうか??お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

> 標準誤差、標準偏差といった言葉の意味が分かりません。



 「計算の仕方」ではなくて「意味」ですね。では,参考 URL のページ(愛媛大学医学部公衆衛生学教室の「統計関係のTips集」)の「標準偏差と標準誤差(pdf形式)」を御覧下さい。

 今の実験で簡単に言うと,

 「標準偏差」は,1回の実験の複数回の測定におけるデータのバラツキの指標です。つまり,今回の測定データがどれだけバラついているかを示します。

 「標準誤差」は,何回か同じ実験を繰り返した(と仮定した)場合の平均値のバラツキの指標です。つまり,複数回の測定で平均値がどれだけバラつくかを示しています。

参考URL:http://pubhelwb.m.ehime-u.ac.jp/tokei/tokei.htm
    • good
    • 0
この回答へのお礼

ありがとうございました。とてもわかりやすい説明でした。本当に助かりました。

お礼日時:2002/10/24 10:43

標準偏差の意味は前に回答されている方のおっしゃる通りです。


心理学系の実験では必ず出てきます。
ちなみにexcelで算出できますよ。
良かったらお試しください。
    • good
    • 0
この回答へのお礼

エクセルやってみました。ありがとうございました。

お礼日時:2002/10/24 10:46

参考URLをどうぞ。



参考URL:http://www.asahi-net.or.jp/~ge3j-ari/STAT/TOKEI. …
    • good
    • 0
この回答へのお礼

ありがとうございました。でも、イマイチ理解できません、、、とにかくありがとうございました。

お礼日時:2002/10/24 10:45

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q標準偏差と標準誤差

標準偏差と標準誤差のちがいってなんですか?
両方とも正規分布(N、σ2/n)のσ2/nの正の平方根をとったものではないのですか?

Aベストアンサー

ある実験(実験1 とします)でn 個のデータ x1, x2, …, xn を集めたとします。
するとその n 個のデータから平均値 m1 と標準偏差 sd1 が得られます(実験1 のデータから計算したという意味で添字 1 を付けます)。

さて、通常は n 個のデータを集めて実験は終了し、データの分析となるわけですが、仮に同じ実験をもっと繰り返したと“想像”してみましょう。それらを実験2、実験3、…とします。そうすると通常は実験で得られる測定値というのは様々な誤差を伴いますので、条件を同じにしたとしてもそれぞれの実験で得られる n 個のデータは毎回同じ組み合わせにはならず、従ってそれぞれの実験データから得られる平均値と標準偏差も異なったものになります(これが X が確率変数と呼ばれる所以です)。

実験を z 回繰り返したとすれば、対応して z 個の平均値 m1, m2, …, mz と z 個の標準偏差 sd1, sd2, …, sdz が得られる事になります。とりあえずこの z 個の平均値について考えると、これらをデータとして「平均値の平均値」と「平均値の標準偏差」を求めることができます。“想像”でのことですから、実験は∞回繰り返してみることができて、そのときの「平均値の標準偏差」を統計学では「平均値の標準誤差」と言います。

このときもしも、元のデータ x1, x2, …, xn がそれぞれ独立に平均μ、標準偏差σの分布(必ずしも正規分布でなくてもよい)に従っているとすると、「平均値の平均値」はμ、「平均値の標準偏差」即ち「平均値の標準誤差」は σ/ √n になることが分かっています。

同様に「標準偏差の標準偏差」も考えらますし、一般的には平均値や標準偏差を含む、いわゆる統計量というものには全て上記のような考え方で「○○という統計量の標準偏差」があります。こうしたものを通常の意味でのデータの標準偏差と区別して「○○の標準誤差」と呼びます。標準偏差というのがデータのばらつきの大きさを示す指標であるのに対し、○○という統計量についての標準誤差が小さければ、その統計量は何度実験をしてもある特定の値に近い値をとりやすいということですから、標準誤差は推定精度を測る目安になります。この意味上の違いを区別するためにも呼び方を変えているのだと思います。

ある実験(実験1 とします)でn 個のデータ x1, x2, …, xn を集めたとします。
するとその n 個のデータから平均値 m1 と標準偏差 sd1 が得られます(実験1 のデータから計算したという意味で添字 1 を付けます)。

さて、通常は n 個のデータを集めて実験は終了し、データの分析となるわけですが、仮に同じ実験をもっと繰り返したと“想像”してみましょう。それらを実験2、実験3、…とします。そうすると通常は実験で得られる測定値というのは様々な誤差を伴いますので、条件を同じにしたとしてもそれぞれの実...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q標準誤差の求め方について

生物実験において例えば
1回の実験につき3つのデータを取り、同じ実験を3回繰り返して
以下のようなデータが出たとします。

実験1回目)120, 130, 110
実験2回目)75, 80, 70
実験3回目)105, 120, 90

それぞれの実験の平均値は以下の値です。
実験1回目)120
実験2回目)75
実験3回目)105

この実験から母集団の平均値のありそうな範囲を求めたいので
標準誤差(SE)を出すと思うのですが、
SE=標準偏差/√データ数
ということから、
平均値mは実験1~3)の平均値から
m=(120+75+105)/3
=100
標準偏差σは
σ=√Σ(m-それぞれの実験の平均値)^2/(標本数-1)
=√[{(100-120)^2 + (100-75)^2 + (100-105)^2}/(3-1)]
=√(1050/2)
(分母は標本数なのかもしれませんが)
よって
SE=√(1050/2)/√3
でいいのでしょうか?

以下に書いてあるように、
http://oshiete1.goo.ne.jp/kotaeru.php3?q=1514110
「平均値の標準偏差」が「平均値の標準誤差」ということなら、
SE=√(1050/2)
なのかなとも思っていまして。誤解していたらすみません。

標準誤差についての説明は多く見受けられましたが、
具体的な計算方法が載っているものがほとんどなかったので
(探せられなかっただけかもしれません)質問させて
頂きました。上記の計算方法が間違っていたら、
ご指摘くださいますようよろしくお願いいたします。

生物実験において例えば
1回の実験につき3つのデータを取り、同じ実験を3回繰り返して
以下のようなデータが出たとします。

実験1回目)120, 130, 110
実験2回目)75, 80, 70
実験3回目)105, 120, 90

それぞれの実験の平均値は以下の値です。
実験1回目)120
実験2回目)75
実験3回目)105

この実験から母集団の平均値のありそうな範囲を求めたいので
標準誤差(SE)を出すと思うのですが、
SE=標準偏差/√データ数
ということから、
平均値mは実験1~3)の平均値から
m=(120+75+105)/3
=...続きを読む

Aベストアンサー

#2のコメントへ

前後の文脈がなくその英文だけでは何をさしているのかわかりません。
本当に平均値の標準偏差を取るのかもしれませんし。

話を整理します。

1. 中心極限定理
母集団について平均をμ、標準偏差をσとします。
この母集団からn個の標本を取り出し平均値を求めると、その平均値の分布は、nが十分に大きければ、平均がμ、標準偏差がσ/√nの正規分布に近づきます。これが中心極限定理です。(厳密にはn無限大の極限で一致ですが、n=10程度になれば、そこそこ近い分布になります。)

この定理により、1セットの実験を繰り返して多数個の平均値を求めなくても、平均値の分布を求めることができます。

2. 不偏分散
母集団の平均や標準偏差が求められればいいのですが、現実には求めることができません。そこで、代用品として推定量を使うことになります。この推定量は、一つの値単独では母集団の値とずれるのは仕方ありませんが、期待値を取ったとき(要するに多数回の実験を繰り返して平均を求める)に母集団の値と一致するような量を選びます。これが不偏推定量で、分散の不偏推定量を特に不偏分散と呼びます。

一回の測定で求められる平均と標準偏差をMとSとすると、定義どおり計算すれば、測定値をxとして1回の実験ごとに

M =Σx/n, S^2 = Σ(x-M)^2/n

が求められます。m回の実験を繰り返すと、それぞれ

M1, M2, M3, ・・・・, Mm, S1^2, S2^2, S3^2,・・・・,Sm^2

とm個のMとS^2が得られ、それぞれの平均、

(M1+ M2+M3+ ・・・・+Mm)/m, ( S1^2+ S2^2+ S3^2+・・・・+Sm^2)/m

を計算することができます。

幸いなことに、Mについてはm→∞の極限でこの平均値の平均が母集団平均μに一致するので、標本平均Mを平均値の不偏推定量として使うことができます。

ところが、S^2については、この分散の平均はm→∞の極限でも母分散σ^2には一致しないので、不偏推定量としては使えません。しかし、その極限値は(n-1/n)σ^2になるので、はじめからS^2の定義に(n/n-1)をかけた量

(n/n-1) S^2 = (n/n-1)Σ(x-M)^2/n = Σ(x-M)^2/(n-1)

を考えておけば、この量の平均はm→∞の極限で母分散σ^2に一致することになります。これが不偏分散です。

3. 平均の実験標準偏差
上のことを考えれば、一回の実験のn個の測定値から平均値の標準偏差を推定することができます。つまり、2の不偏分散をnで割ってやれば平均値の分散の推定値を得ることができ、標準偏差は分散の正の平方根なので、平均値の標準偏差は

√[Σ(x-M)^2/(n-1)/n]

で求められることになります。GUMでは、この量に対し、平均の実験標準偏差という名前が与えられています。

質問の文章や上の回答の中に出現している「平均値の標準偏差」や「平均値の標準誤差」というものは、このような手順で導出される量を指しています。したがって、質問にあるように複数個の平均が求められている場合に、その公式を平均値に使うのは誤りです。

ただし、これが質問者が書いているような「同じ実験」ではなく、制御できない要因が入り込んだことによる別の実験の個々の測定値であるとするのであれば、おそらく、質問の計算は間違いでもないと思われます。が、本当にそれに意味があるかどうかは別途考察が必要だろうと思います。たとえば、求めたいものが制御不能な変動の巾であるのだとしたら、最後にnで割らず、

√[Σ(M-<M>)^2/(n-1)] または√[Σ(M-<M>)^2/n]

で求める方が適切です。

#2のコメントへ

前後の文脈がなくその英文だけでは何をさしているのかわかりません。
本当に平均値の標準偏差を取るのかもしれませんし。

話を整理します。

1. 中心極限定理
母集団について平均をμ、標準偏差をσとします。
この母集団からn個の標本を取り出し平均値を求めると、その平均値の分布は、nが十分に大きければ、平均がμ、標準偏差がσ/√nの正規分布に近づきます。これが中心極限定理です。(厳密にはn無限大の極限で一致ですが、n=10程度になれば、そこそこ近い分布になります。)

この定理...続きを読む

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Qエクセルでの標準誤差の求め方を教えてください

教えてgooで検索したところ、以下のような質問をなさった方がいらっしゃったのですが、この質問に対する回答のURLを見たところ存在しないとの事でした。

標準誤差(Standard Error; SE)の計算が必要になったのですが、なんとExcelの関数の中にSEが無いことに気が付きました。いや正確には"STEYX"と称するものがあることはあるのですが、これはどうも少し違うようで平均や標準偏差(SD)でするように1列(行)のデータから計算しようとするとエラーが出てうまく行きません。本当にExcelではSEが計算出来ないのでしょうか?それとも前述の"STEYX"から計算出来るものなのでしょうか?

ご存知の方いらっしゃったら教えてください。

Aベストアンサー

標準偏差/(標本数の平方根)が標準誤差なのでSTEYXは違います.STDEV/sqrt(標本数) で求めるしかないのでは?(Macroを使わないなら)

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q標準偏差について詳しい方お願いします

お世話になります。
標準偏差は平均からのばらつき・・とききますが、「標準偏差が大きい」「小さい」という、その目安がわかりません。

たとえば、50人の集団で平均年齢30歳、標準偏差1.2だったらどうでしょうか?

また、平均年齢が同じぐらいでも、標準偏差が1.0と10.0と違う2つの集団についていろんなデータを比べると、何か問題がありますか?

どちらかでもいいので、わかるかたがいましたらおねがいいたします。

Aベストアンサー

とりあえず、「標準偏差」の定義はURLを読んでいただくとして。

標準偏差は「分散」の平方根ですから、その集団の標準偏差が大きい
ということは、その集団のデータのばらつきが大きいということです。

とりあえず、以下の話は母集団が正規分布をするという仮定で行います。

仮に平均年齢が同じ30歳で、標準偏差が1の集団の場合、その集団には
28歳~32歳の人しかいない(95%程度の確率でその中にデータがある)
ということですし、標準偏差が10ならば35歳の人も結構フツーにその
中にいる(同じ確率では10~50歳になります)ということです。

逆に、例えばテストの点などを考えますと、同じ60点でも平均65点、
標準偏差5、の場合と平均70点、標準偏差10の場合では、どれだけ
違うか直接には比較出来ません。これらを「平均50、標準偏差10」
に換算して比較するのが「偏差値」の考え方です。
(上記の場合、どちらも同じ偏差値40になります)

ということで標準偏差は、ばらつきの度合いを平均値と同時にチェック
する時に使う値です。標準偏差の違う集団を直接に比較するかどうかは
その母集団の性質によって違いますよ。

参考URL:http://ja.wikipedia.org/wiki/%E6%A8%99%E6%BA%96%E5%81%8F%E5%B7%AE

とりあえず、「標準偏差」の定義はURLを読んでいただくとして。

標準偏差は「分散」の平方根ですから、その集団の標準偏差が大きい
ということは、その集団のデータのばらつきが大きいということです。

とりあえず、以下の話は母集団が正規分布をするという仮定で行います。

仮に平均年齢が同じ30歳で、標準偏差が1の集団の場合、その集団には
28歳~32歳の人しかいない(95%程度の確率でその中にデータがある)
ということですし、標準偏差が10ならば35歳の人も結構フツーにその
中にいる(同じ確率...続きを読む

Q測定したデータの誤差を計算する方法

集めたデータのばらつきを求めるときに使う計算法として、標準偏差がありますが、「誤差=平均値±標準偏差」と考えていいのでしょうか?
ほかに標準誤差というのがあるようなのですが、説明を読んでも何を意味している誤差なのか理解できません。
ちなみに、データは以下の通りです。

データ数:60
最高値:39.00
最低値:11.00
平均値:22.56
標準偏差:5.261
標準誤差:0.679(5.261/√60)
標準偏差を誤差と考えると22.56±5.261で、総データの70.0%が含まれます。
標準誤差を誤差と考えると22.56±0.679で、総データの10.0%が含まれます。

回答よろしくお願いします。

Aベストアンサー

ここで言う標準誤差は,平均値の確度を表す指標です.
(私自身は標準誤差という名称は初めてですが...)
なので母集団の平均の推定値は算出した平均値±α*標準誤差
(αは推定値の信頼度によって変化します.詳しくは
統計の教科書のt-分布のあたりをご覧下さい)

あと質問者さんは誤差を求めたいようですが,誤差の定義は
誤差=測定値-真値
であり,一般に真値は分からないので誤差は分からないことになります.
また何の誤差をお知りになりたいのかも不明です.上のデータが何をあらわしてるのかは不明ですが,
同一のものを60回測定した結果であれば,母集団の平均の推定値がほぼ真値を表しますので,誤差は,ほぼ標準偏差と考えることができるように思います.
一方60個の別のものを測定したとすれば,母集団の平均の推定値は母集団の平均値であり,標準偏差は60個のものの分布を表していることとなり,誤差という話はあまり出てきません.(無理に言えば,製造の誤差と言えなくもありませんが)

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む


人気Q&Aランキング