数学では普通わからない数をa,b,x,yなどいろんなもじにおいて表すと思うんですが・・『関数f(x)が区間Iで定義されているとする。aが区間Iに含まれていて適当な正の数δを選べば「a-δ<x<a+δかつx≠aをみたす任意のxに対してf(x)<f(a)」が成立するときf(x)はx=aで極大であるという。』という文を読んで、δはa,b,x,yなどとは違う働きをするのかな??と思えて・・・どうなんでしょう??「δ」って何を表しているのでしょうか?また『』内の文のいみもいまいちわかりません。 教えてください!!!お願いします!!!!

このQ&Aに関連する最新のQ&A

A 回答 (6件)

f(a)君が居るとします.



自分の位置x=aを中心に幅δ(デルタ), つまりa-δ<x<a+δ の範囲(区間)を見渡して
[ただしここでは端点x=a±δは含めない],
その範囲では『自分より強いものはいないぞ!』⇔「a-δ<x<a+δかつx≠aをみたす任意のxに対してf(x)<f(a)」が成立する

というとき, 『お山の大将俺一人』⇔「f(x)はx=aで極大である」

ということです.

でも, 幅δをだんだん広げていけば, そのうちもっと強いヤツが現れるかも知れませんね. 世界は広い. だからf(a)君が威張れるためには, 自分より強いヤツが現れない(入ってこない)範囲に限定しないといけないわけです.
だから, 安全を見て普通はδは十分小さな正の値と思っておけばよいでしょう.
でも, 場合によっては,かなり大きな値でもかまわないことも,もちろんあります.
(f(x)=-x^2でa=0なら, δはいくら大きくても良い)

ただし, 見た(ある狭い)範囲内では最大でも, 定義域全体でみて最大とは一般の関数では必ずしも言い切れないわけです. (例: f(x)=x^3-3x は極大値をもつが,最大値は無い.)
    • good
    • 0

δはゼロに一番近い正の値で分かりますか?


そんな数字は数字で表せないから、文字で置いたのです。
0.000000000000001よりも小さく0より大きい数

a-δ<x<a+δかつx≠a

これはxはaよりもほんのわずかだけ小さいか大きいかの範囲にあるということです。xはaのすぐ近くにあると言えば分かりますか?
極大・極小は分かりますか?簡単に言えば、その前後で傾きの符号が入れ替わっているという点です。(正から負が極大、負から正が極小)グラフに書けば上に凸の点が極大、下に凸の点が極小。

a-δ<x<a+δかつx≠aをみたす任意のxに対してf(x)<f(a)」が成立するときf(x)はx=aで極大であるという

これは、aの近辺でf(a)が1番大きければ、f(a)は極大になるということです。
    • good
    • 0
この回答へのお礼

お礼が大変遅くなりました。ごめんなさい。

お礼日時:2003/12/06 23:40

#3ですが補足です.


あまり深刻な話では無いのですが,
>自分の位置x=aを中心に幅δ(デルタ), つまりa-δ<x<a+δ の範囲(区間)を見渡して
と書いた中の『幅δ(デルタ)』という表現はhalf width(片側の幅)δのつもりでした(aを中心に振幅δの意味). 普通の意味(full width :全幅)でa±δの幅を表すと『全幅2δ』です.
#3では他にも同様の表現を使っているので注意して読んで下さい.
    • good
    • 0

数学では、アルファベットやギリシア文字、ローマ文字などを使いますが、実は、それぞれの文字は、ある程度、使い分けられています。

数学を学んで日の浅い方は、その使い分けがあまりよく分からないかもしれませんが、勉強を続けていれば、自然に分かるようになってくるでしょう。極値については、高校のときに習ったと思います。高校の数学から大学の数学に替わったときに、戸惑うことの一つは、内容の表現方法の違いにあるかもしれません。大学の数学では、対象の直感的な理解に留まらずに、対象にはっきりとした定義を与えます。極値とは何か?と問われれば、頭の中にグラフを思い浮かべて、山や谷になったところと答えるかもしれません。このとき、もう少し”数学的な”はっきした定義を与えたいところです。そこで、

『関数f(x)が区間Iで定義されている。aが区間Iに含まれ、適当な正の数δを選んだとき、a-δ<x<a+δ, かつ x≠aを満たす任意のxに対して、f(x)<f(a)が成立するとき、f(x)はx=aで極大であるという。』

という定義を考えてみたわけです。あまり”ピン”と来ないかもしれませんが、しばらく熟考してみてください。
    • good
    • 0

δはおそらく微小の数です。

この話は習ったことが無いので、名前は知りません。
この書き方は正しくありませんが、
δ=1/∞
と思っていいかもしれません。
ただし、δは0ではありません
a-δ<x<a+δというのは
xがaの近辺にあるときではないでしょうか
aの近辺でf(x)<f(a)ということは、aの近辺でf(a)は一番多きいのですから、f(a)は極大となります。

例えばxの3次関数でいうと、極大の辺りしか見ていません。
    • good
    • 0

こん**は。



「δ」は「デルタ」ですよね?つまり微小な数を表しています。
まあ、この場合あまり深く考えずにおいても(ある数bと考えても)問題ないかと思うのですが・・・。

続いて、『』内ですが、もう少し具体的に考えて、たとえば、

2-δ<x<2+δかつx≠2を満たす適当なxの値で、f(x)<f(2)が成立すると考えるとわかりやすいのでは?

x=2のとき以外は、xに何が入っても指定区間内ではf(2)より小さいんですから、f(x)はx=2のときに最大値をとります。

これをややこしく(数学的に)いうと、f(x)はx=2で極大であるという。となります。

参考になりましたでしょうか?
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

QV:有限次元内積空間,∀f∈Dual(V),∃1y∈V such that f(x)= (∀x∈V)

宜しくお願い致します。

[問]VとDual(V)をそれぞれ有限次元内積空間とVの双対空間とする。
∀f∈Dual(V),∃1y∈V such that f(x)=<x,y> (∀x∈V)

という問題が証明できません。

Dual(V)はvHom(V,C):={f;f:V→C,fはベクトル空間準同型}(Cは複素数体を表す)
の事です。
fがベクトル空間準同型とは∀v,w∈V,∀c∈C,f(v+w)=f(v)+f(w)∧f(cv)=cf(v)と満たす線形写像の事です。

内積の定義は複素線形空間Vの任意の要素x,yに対して複素数<x,y>が定まり,次の4条
件を満たす時<x,y>をxとyの内積といい,内積が定義されている空間Vを内積空間と言
う。
(i) <x,x>≧0; <x,x>=0⇔x=0
(ii) <x,y>=<y,x>~ (~はバーを表す)
(iii) <x+y,z>=<x,z>+<y,z>
(iv) <αx,y>=α<x,y>

です。
この命題を満たすyとして何を採れば宜しいのでしょうか?

Aベストアンサー

んーー,わざわざ「射影」といったのに
証明のその部分を読み飛ばしてるとは・・・

>∃v∈V\Ker(f)でC∋)f(v)≠0(∵Kernelの定義)で∀x∈Vに対し
>f(x-f(x)/f(v)v)=f(x)-f(x)/f(v)f(v)(∵fは線形写像)=f(x)-f(x)=0…(1)

これ自体は正しいのですが,このvだと余計な成分があって駄目です。
射影もしくは「分解」とかの議論がありませんでしたか?
(何を参照したのか分かりませんがなければその証明はだめです)

vそのものではなく,
Kef(f)+U=Vのように直交分解して
v=w+u,wはKer(f)の元,uは0ではなく,Ker(f)とuは直交
となるようにします.
#これは有限次元だから可能
#けどヒルベルト空間ならこれに類することができる
このとき,
∀x∈Vに対し
f(x-f(x)/f(u)u)=f(x)-f(x)/f(u)f(u)=0
したがって,x-f(x)/f(u)uはKer(f)の元
だから,
0=<x-f(x)/f(u)u,u> (uはKer(f)の直交補空間Uの元)
=<x,u> - f(x)/f(u) <u,u>
よって
<x,u>f(u)=f(x)<u,u>
f(x)<u,u>=<x,u>f(u)
f(x) = (f(u)/<u,u>) <x,u>
= <x, (f(u)/<u,u>)~ u>
ですか.複素でやってるので
内積の後ろに方に
スカラーを入れると共役になるのに注意.

#内積があれば,双対・もとのベクトル空間・双対の双対が
#簡単になるというありがたいお話ですな

んーー,わざわざ「射影」といったのに
証明のその部分を読み飛ばしてるとは・・・

>∃v∈V\Ker(f)でC∋)f(v)≠0(∵Kernelの定義)で∀x∈Vに対し
>f(x-f(x)/f(v)v)=f(x)-f(x)/f(v)f(v)(∵fは線形写像)=f(x)-f(x)=0…(1)

これ自体は正しいのですが,このvだと余計な成分があって駄目です。
射影もしくは「分解」とかの議論がありませんでしたか?
(何を参照したのか分かりませんがなければその証明はだめです)

vそのものではなく,
Kef(f)+U=Vのように直交分解して
v=w+u,wはKer(f)の元,uは0ではなく...続きを読む

Q(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

(d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。
これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。
そこで、
(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy
が成立するための必要十分条件を教えていただきたいと思っています。
もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

Aベストアンサー

積分と微分の順序交換については
必要十分条件は一般にはありません.
ただし,十分条件は知られています.

リーマン積分の範囲だと
f(x,y)が連続で,f_y(x,y)も連続くらいの条件があれば
d/dy∫f(x,y)dx = ∫f_y(x,y)dx
くらいがいえるはずです.
#積分区間とかは省きます.

その十分条件で一番便利だろうと思われるものは
ルベーク積分の言葉で記述されます.
興味があれば,「ルベーク積分」の本を
追いかけてください.
・ルベークの有界収束性定理
・L^1空間
というようなものが理解できれば,順序交換の定理は理解できます.

QMathematica f[{x, y}]を f[{a, x, y}]に変えたい

関数の f[{x, y}]+g[{z, w}] という式があったときに,これらの式の f や g の中に入っているリスト(今の場合は,{x, y}や{z, w})の先頭に,a を付け加えて, f[{a, x, y}]+g[{a, z, w}] のようにしたいと考えています.
(すなわち,f[{x, y}]+g[{z, w}]を f[{a, x, y}]+g[{a, z, w}]に変えたり,また他の例としては,f[{x, y}]+g[{z, w}]+h[{c, d}]を f[{a, x, y}]+g[{a, z, w}]+h[{a, c, d}]に変えたりしたい.)

このとき,例えばPretendを使うと,
Prepend[f[3, 1], 2]
によって,f[2, 3, 1]が得られることなどは知っていますが,上記のようなものに対して,どのようにすればよいのかが,わかりません.

もしもご存じの方がおられれば,お教え頂けないでしょうか?

Aベストアンサー

パターンマッチングを使うのがMathematica的です。

f[{x, y}] + g[{z, w}] /. {s_Symbol[{args__}] -> s[{a, args}]}


人気Q&Aランキング

おすすめ情報