gooポイントが当たる質問投稿キャンペーン>>

材料力学を勉強していますが、
応力を小文字のシグマで表す
ことが多いようです。そこで、
小文字のシグマが数字の6と
よくにていることに気がつきました。
中学校の数学の授業では、
bを6と間違えないように
筆記体で書くように習いましたが、
小文字のシグマを6と間違えない
ような対処方法はありませんか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

    • good
    • 4

普通は間違うことはない。


「6」の書き方
外に出た棒を右上から左下に書き下ろし、丸めて終わる。
棒の部分が長い。
「σ」の書き方
棒についた丸の部分から右下に丸く書き下ろし、左に丸めて右上の方向に、短い棒を作る。
または、上部をもっと寝かせて棒の部分をいくらか波打つようにする。
「σ」の上の棒の長さを短くしょう。

いずれにしても、「σ」を知らない人は間違うかもしれないが、それは仕方がない。
    • good
    • 2

正しい筆順で書いていれば、小文字のシグマと6とを間違えるとは思えません。



小文字のシグマの筆順を逆にしていませんか?
    • good
    • 6

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qギリシャ文字の書き方

私はギリシャ文字(特にδ、ζ、ξ)を書くのがとても苦手です。しかしながら、レポートを書くときには多用しますし・・・。レポートを見た教官様が私のへたくそな筆跡を見て嘲笑されるさまが目に浮かびます(泣)

ギリシャ文字を書くときのコツをお教え願いませんでしょうか。
是非よろしくお願いしますm(_ _)m

Aベストアンサー

物理屋の siegmund です.

化学に限らず,理工系ではギリシア文字はよく出てきますね.
例えば,
http://homepage1.nifty.com/suzuri/gg/ggk001.html#111
に書き順が出ています.
ありゃ~,私の書き順は上のページと違っているのがいくつかある(^^;).
まあ,いいや,要はちゃんとわかればいいんだから.

No.1 さんの言われるように,はじめは下手なのは仕方がないでしょう.

> レポートを見た教官様が私のへたくそな筆跡を見て
> 嘲笑されるさまが目に浮かびます(泣)

嘲笑はしないと思いますが....(^^).
大事なのは,はっきりわかるように書くことです.
σとδ,ζとξ,μとν,などがが同じように見えるのでは困ります.
φとψを混同する学生さんも時々います.
あとは,英字との区別,
ρとp,αとa,ηとn,γとr,κとk,
などはっきり区別できるように書くことも大事です.

こういうことはギリシア文字に限らないことで,
uとvが同じように見えるのも困りますよね.

物理屋の siegmund です.

化学に限らず,理工系ではギリシア文字はよく出てきますね.
例えば,
http://homepage1.nifty.com/suzuri/gg/ggk001.html#111
に書き順が出ています.
ありゃ~,私の書き順は上のページと違っているのがいくつかある(^^;).
まあ,いいや,要はちゃんとわかればいいんだから.

No.1 さんの言われるように,はじめは下手なのは仕方がないでしょう.

> レポートを見た教官様が私のへたくそな筆跡を見て
> 嘲笑されるさまが目に浮かびます(泣)

嘲笑はしないと思いま...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

QΣ、Ω(大文字)の書き順がわかりません…。

なんかカテゴリが違うような気もするのですが失礼します。

http://www.tomakomai-ct.ac.jp/department/gene/apmath/greek.htmlや
http://homepage1.nifty.com/suzuri/gg/ggk001.html#111
によりその他のギリシア文字の書き順はわかったのですが、
よく出てくる肝心のこの2文字が調べてもどうも出てきません。
どなたか教えてくれないでしょうか。

Aベストアンサー

No.1です。今見て間違えに気づきました。

Σは2と3の所は続けて書きます。つまり2順で書くという事です。

書いてて混乱しました、すみません。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q原核生物と真核生物の違い

原核生物と、真核生物の違いについて教えてください(><)
また、ウイルスはどちらかも教えていただけると嬉しいです!

Aベストアンサー

【原核生物】
核膜が無い(構造的に区別出来る核を持たない)細胞(これを原核細胞という)から成る生物で、細菌類や藍藻類がこれに属する。

【真核生物】
核膜で囲まれた明確な核を持つ細胞(これを真核細胞という)から成り、細胞分裂の時に染色体構造を生じる生物。細菌類・藍藻類以外の全ての生物。

【ウイルス】
濾過性病原体の総称。独自のDNA又はRNAを持っているが、普通ウイルスは細胞内だけで増殖可能であり、ウイルス単独では増殖出来ない。



要は、核膜が有れば真核生物、無ければ原核生物という事になります。

ウイルスはそもそも細胞でなく、従って生物でもありませんので、原核生物・真核生物の何れにも属しません(一部の学者は生物だと主張しているそうですが、細胞説の定義に反する存在なので、まだまだ議論の余地は有る様です)。



こんなんで良かったでしょうか?

Qギリシャ文字「ロー」の書き方

物理を勉強しているものです。物理を勉強している以上ギリシャ文字は避けられないのですが、ロー(ρ)の正しい書き方が分かりません。
自分で調べようとしたのですがそれでも二通り書き方が存在していました。

http://www.tomakomai-ct.ac.jp/department/gene/apmath/greek.html

http://homepage1.nifty.com/suzuri/gg/ggk001.html#111

どなたか、実はどっちでもいいとか、または正解はこっちだと分かる方、教えていただけないでしょうか?
お願いします。

Aベストアンサー

ギリシャ語の古い文献を趣味で読む者です。

時代や書き手による差はありますが、どちらの書き順もあります。質問者様の挙げておられる上のサイトの書き順のほうがやや優勢です。が、下のサイトの順序を基準とした活字やフォントや個人の筆跡もよく見かけます。
私自身は上のほうの順序で書きます。学生時代に習ったギリシャ語の先生も、人によってまちまちでした。

文章を筆写する際などは筆順が安定していた方が連綿が美しいです。ですが、1文字か2文字が数式などに並ぶのならそれほど書き順は気にしなくてよいと思います。

Q加重平均と平均の違い

加重平均と平均の違いってなんですか?
値が同じになることが多いような気がするんですけど・・・
わかりやす~い例で教えてください。

Aベストアンサー

例えば,テストをやって,A組の平均点80点,B組70点,C組60点だったとします.
全体の平均は70点!・・・これが単純な平均ですね.
クラスごとの人数が全く同じなら問題ないし,
わずかに違う程度なら誤差も少ないです.

ところが,A組100人,B組50人,C組10人だったら?
これで「平均70点」と言われたら,A組の生徒は文句を言いますよね.
そこで,クラスごとに重みをつけ,
(80×100+70×50+60×10)÷(100+50+10)=75.6
とやって求めるのが「加重平均」です.

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Q四次元というのはどんな世界ですか?

そもそも我々の住んでいる世界は三次元ですか、四次元ですか?
三次元の世界とは縦横高さのある空間の世界だと思います。
これに時間の概念を足せば四次元になるのでしょうか?
我々の世界にも時間があるので、四次元といってもいいのでしょうか?
それとも四次元とは時間とは無関係の世界なのでしょうか?
あるいは時間と空間を自由に行き来できるのが四次元なのでしょうか?

よろしくお願いします。

Aベストアンサー

>そもそも我々の住んでいる世界は三次元ですか、四次元ですか?

4次元であると考えると都合がいいというのが
現段階の結論です。

 100年ほど前、スイスのチューリッヒ工科大学
のミンコフスキー教授が物理学的な4次元の理論というのを
考えました。物理的な計算をするのに、縦、横、高さ
方向以外にもう1つ方向があるとして計算すると
うまく計算できることがあるというもので、
彼の教え子の一人が、4次元時空の理論と
して有名な相対性理論を完成させた、アルバート・
アインシュタインでした。
 彼は、リーマンという数学者が作った、
曲がった空間の幾何学(現在リーマン
幾何学と呼ばれています)を使い、4次元の
空間が歪むという状態と、重力や光の運動を
あわせて説明したんです。これが相対性理論。

>これに時間の概念を足せば四次元になるのでしょうか?

 物理学的にはそうです。

 相対性理論の話に関連付けて説明するとこんな感じです。
例えば、下敷きの板のような平面的なもの(数学的には
これを2次元空間と言ったりします)を曲げると
いう動作を考えてみて下さい。下敷きに絵が書いて
あったとして、曲げながらそれを真上から見て
いると、絵は歪んで見えます。平面的に見て
いても下敷きという2次元空間が歪んでいる
ことが感じ取れます。
 2次元的(縦と横しかない)な存在である下敷きが
歪むには、それ以外の方向(この場合だと高さ方向
ですが)が必要です。

 19世紀に、電気や磁気の研究をしていた学者たちが、
今は小学校でもやる砂鉄の実験(紙の上に砂鉄をばら撒いて
下から磁石をあてると、砂鉄が模様を描くというやつです)
を電磁石でやっていたときに、これは空間の歪みが
原因ではないかと直感したんです。
 電磁石の強さを変えると、砂鉄の模様が変化します。
これを砂鉄が動いたと考えず、砂鉄が存在して
いる空間の歪みが変化したのでは?と考えたんです。

 3次元の空間がもう1つ別な方向に曲がる。
その方向とは時間という方向だということを
証明したのが、相対性理論だったんです。


>あるいは時間と空間を自由に行き来できるのが四次元なのでしょうか?

 4つ目の方向である時間は、存在していても
その方向に、人間が自由には移動する方法は
現在ありません。時間方向を自由に動ける機械と
いうのは、タイムマシーンのことなんですが。

 日常生活を考えてみたとき、縦、横といった
方向は割りと自由に動けます。1時間ちょっと
歩けば4kmくらい楽に移動できますが、
道路の真中で、ここから高さ方向に
4km移動しろと言われたら、人力だけでは
まず無理でしょう。
 飛行機やロケットといった道具が必要と
なります。
 時間方向というのは、このように存在していても
現在のところ自由に移動できない方向なんです。

 例えば、人間がエレベーターの床のような
平面的な世界に生きているとしましょう。

 この場合、高さ方向を時間と考えて下さい。

 エレベーターは勝手に下降しているんです。
この状態が、人間の運動と関係なく、時間が
経過していく仕組みです。

 人間もほんの少し、ジャンプして高さ
方向の移動に変化をつけることができます。

 同様に時間もほんの少しなら変化をつける
ことができます。

 エレベーターの中で、ジャンプすると
ほんの少し下降を遅らせることができる
ように、時間もほんの少し遅らせることは
できるんです。




 

>そもそも我々の住んでいる世界は三次元ですか、四次元ですか?

4次元であると考えると都合がいいというのが
現段階の結論です。

 100年ほど前、スイスのチューリッヒ工科大学
のミンコフスキー教授が物理学的な4次元の理論というのを
考えました。物理的な計算をするのに、縦、横、高さ
方向以外にもう1つ方向があるとして計算すると
うまく計算できることがあるというもので、
彼の教え子の一人が、4次元時空の理論と
して有名な相対性理論を完成させた、アルバート・
アインシュタイン...続きを読む


人気Q&Aランキング