ここから質問投稿すると、最大4000ポイント当たる!!!! >>

ビフェニルの求電子置換反応は4,4’位で起こるのはなぜですか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

このような配向性の問題を理解するのに一番よいのは、2位、3位、4位とそれぞれに求電子置換反応が起きた場合の機構を書いてみることです。


中間に生じるアレニウムイオンを安定化させる要因が有る位置が置換の位置です。
暗記をしても無意味ですので。
    • good
    • 0

結論から言うとビフェニルはo,p-配向性、かつフェニル基の立体障害があるのでp-位に置換反応が起こります。


なぜo,p-配向性かというと、中間体においてm-位に比べ共鳴式が多くかけるのでより安定性が高いからです。
しかしフェニル基は電子供与基ではありません。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qπ電子の数え方教えてください!

http://ns.ph.sci.toho-u.ac.jp/tamura/Hakone96/HKNchem.htm

の3番の π電子とありますが、なぜリンクに載っている数になるのか分かりません。どなたか分かりやすく教えて頂けないでしょうか?
すみません。。。

Aベストアンサー

まず、σ結合と、π結合の確認から。

σ: 結合軸を含む平面内に電子密度最大・・・強い結合(分子骨格)

π: 結合軸を含む平面上で電子密度ゼロ・・・弱い結合

   二重結合の2本目
   核からの束縛が弱いので,何かあったとき動きやすい

この、核からの束縛が弱い状態にある電子がπ電子といいます。

たとえば、C=Cの重結合の場合、C原子一個辺りのp軌道の電子数は2つ。
このうち1つをσ結合として使い、残りの1つは、横方向でなく、縦方向に電子の遷移が起こっていると考えます。

この電子の縦の移動している状態同士の相互作用が、実質のπ結合となるわけです。

このπ電子と同じような弱い結合を作りうるような、(実際は作っていなくても、そのような状態にある電子)のことを「非結合性π電子」と数えるとすると、二重結合を作っていない原子にも、それぞれ2個ずつ電子があると確認できるということです。(C以外の電子で。)

ちなみに、軌道のことは大丈夫でしょうか。
s軌道、p軌道、d軌道等の、基本的な軌道と、混成軌道の概念です。
この混成軌道の概念を押さえると、どの結合にどの電子が使われているかがわかると思います。

説明がへたくそでごめんなさい。

例えば、O(酸素原子)の電子状態は、1sに2個。2sに2個。2pに4つ入っているわけですが、
2p軌道のx、y、z軸のうち、スピン状態を考えた矢印は、x軌道に2つ、y軌道に1つ、z軌道に1つ
(xyzであっていたかは微妙ですが。)と成っているはずです。
この2pのy、zの二つの電子がπ電子となりうる電子です。
xの二つの電子は不対電子対となり、結合に関与しない電子となります。

何年も前に勉強したないようですので、回答のどこかに間違えがあったらごめんなさい。
量子力学の先生に聞いてみてください。
繋がると思います。

まず、σ結合と、π結合の確認から。

σ: 結合軸を含む平面内に電子密度最大・・・強い結合(分子骨格)

π: 結合軸を含む平面上で電子密度ゼロ・・・弱い結合

   二重結合の2本目
   核からの束縛が弱いので,何かあったとき動きやすい

この、核からの束縛が弱い状態にある電子がπ電子といいます。

たとえば、C=Cの重結合の場合、C原子一個辺りのp軌道の電子数は2つ。
このうち1つをσ結合として使い、残りの1つは、横方向でなく、縦方向に電子の遷移が起こっていると考えます。

この電子の縦...続きを読む

Q本試験と空試験

容量分析における、この2つの用語のきちんとした説明ができません。
できる方、おしえていただけませんでしょうか?

Aベストアンサー

 こんにちは 何方からも解答が無いので、浅学を省みず、、、
 容量分析で言う空試験は、2つに大別されます。
 まず、「逆滴定」の場合
 過剰な反応試薬を加えて一定時間置き、次いで反応し残った反応試薬を滴定するものですが、この場合の「空試験」は、試料を加えない、反応試薬のみの分析をいいます。「本試験」は試料を加えた場合です。
 一方、普通の滴定では、試料を加えたものを「本試験」(と言う言い方は、自分には馴染みが無いのですが)と言い、この場合の「空試験」の意義がaitatataさんには解からないのでしょうか。
 試験に用いる試薬に不純物が有り、本試験に対してマイナス又はプラスに作用する場合が、まま有ります。
 この、不純物によるズレを補正するため、「空試験」を行います。 つまり、試料を用いないで、「本試験」と全く同じ操作を行う訳です。
 

Q硫酸アルミニウムカリウムの定量

硫酸アルミニウムカリウムの定量では、アンモニア試薬を加えて沈殿させた後、強熱して重量を定量しますが、このときの反応式はどうなるのでしょうか??
KAl(SO4)2・12H20 + NH3 → KAl(SO4)2 ……
なのかなぁと思ったんですが、全然分かりません!
どなたかご存知の方がいらっしゃったら教えて下さい!

Aベストアンサー

アルミニウムイオンは水酸化物イオンの少量存在下で水酸化アルミニウムの沈殿を生じます。
ここでアンモニア水は塩基性水溶液として用いているだけであって、アンモニア自身が反応に関与するわけではありません。
 Al^3+ + 3OH^- → Al(OH3)↓

この定量に水酸化ナトリウムは使えません。
水酸化物イオンが多量に存在すると
 Al(OH)3 + OH^- → [Al(OH)4]^-
の反応を起こして沈殿が再溶解します。

Qナフタレンのスルホン化

ナフタレンをスルホン化したときに、スルホン基がどこにつくか分かりません。教科書ではC1位に付いたほうが共鳴構造式で安定した構造が得られるという理由でC1位に付いていましたが、学校のテストではC2位についていました。反応の条件によって変わるのでしょうか?お願いします。

Aベストアンサー

これは条件に依存します。
スルホン化は可逆反応であり、速度論支配と熱力学支配では生成物が違います。
熱力学的に安定なのは2位に置換したものであり、その一方で生成速度の速いのは1位で置換したものです。
したがって比較的低温で速度論支配の条件では1位で、比較的高温で熱力学支配の条件では2位でスルホン化が起こります。

ちなみに、ニトロ化などは非可逆反応のなので常に速度論支配となり、1位での反応が優位になります。

Qニトロフェノールのオルト体とパラ体

 ニトロフェノールのオルト体とパラ体では沸点が相当違いますよねぇ・・・。ニトロ基の場所の違いがどうして沸点の差に結びつくんでしょう?沸騰するっていうのは蒸気圧=外圧になるってことですよねぇ。となると、パラ体の溶液のほうが外圧が高くなるってことでしょうか?それとも蒸気圧が低くなるのでしょうか?でも、なんでニトロ基の場所が違うだけで、そんなことが起こるノー--?
 教えてくださいっっ!!寝れません!!

Aベストアンサー

原因は分子間水素結合をするか、分子内水素結合(キレーション)をするかです。
パラの場合はニトロ基と水酸基が分子の間で水素結合しますので。沸点は高くなります。見かけの分子量が上がるわけですね。
しかし、オルト体では分子模型を作って頂くと良く分かるのですが、水酸基とニトロ基はとなりあい、分子内の官能基で水素結合を起こします。この現象をキレーションと呼びます。このためオルト、パラと比べて分子単体でいる確率が高くなります。ゆえに他の二つと比べて沸点が下がります。
この現象で同様に溶解度の説明も出来ます。溶解するためには、水和する必要があるわけですが、先の理由によりオルト体では水酸基が水和できない状態になっています。従って溶解度が下がります。パラとメタの差については電子の吸引で説明できます。パラの方がより酸性に傾くわけです。
なお補足ですが、確かパラ体では沸点がなかったのではないでしょうか?その前に分解してしまうはずです。

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Qベンゼンのスルホン化について

ベンゼンに発煙硫酸or濃硫酸を加えると、ベンゼンがスルホン化する反応についてですが、ベンゼンとSO3(三酸化硫黄)を加えると求電子置換反応でスルホン化するのは分かりますが、硫酸を加える理由がいまいちよく分かりません。とても飲み込みが悪い方なので、できれば易しく教えていただければ幸いです。

Aベストアンサー

No.1の方の回答に、補足させていただきます。

スルホン化は脱水縮合の可逆(平衡)反応なので、反応が進んで水が生じるに従い、
反応が進みにくくなります。

  C6H6 + H2SO4 ←→ C6H5SO3H + H2O  


このとき、硫酸に三酸化硫黄を溶かした発煙硫酸を用いると、水と三酸化硫黄とが
反応することにより、硫酸となります。

  H2O + SO3 → H2SO4

このことにより、発煙硫酸を用いると、より効率よくスルホン化が行えるというわけです。
(No.1の方の回答の硫酸と三酸化硫黄によるスルホニウムイオンの生成という経路を考える
 にせよこちらで考えるにせよ、重要なのは「反応を阻害する水を生じない」ということ)

QROHとPBr3の反応

ROH+PBr3→RBrの反応はどのような反応なのでしょうか。
できれば、どのように進むのか教えてください。
調べようと思ったのですが、どの分野を調べればいいかわからないので、
それだけでもいいですから、お願いします。

Aベストアンサー

普通は有機化学の教科書で、アルコールからハロゲン化アルキルの合成法として説明されていることが多いと思います。
有機化学の教科書のアルコールのところを見れば説明があると思います。
R-OH + PBr3 → R-O-PBr2 + HBr
を経由して進む反応だと思います。ただし、そこから先は反応条件によって違うようで、必ずしもハッキリしませんが、分子内的に反応が進んで、
R-O-PBr2 → R-Br (+ O=P-Br):この部分は怪しい
といった感じになったと思います。

Qオゾン分解におけるZnによる還元

オゾン分解において、オゾニドを還元する方法として、「ジメチルスルフィドの添加」又は、「酢酸中、金属亜鉛で処理」が挙げられています。(ボルハルト・ショアー 現代有機化学)
この反応機構について、前者については、ジメチルスルフィドのSのローンペアが、オゾニドのCに挟まれたOを攻撃することにより、環の開裂が起きるのではないかと予想しました。(これについても、間違っていたらご指摘頂きたく思います。)
しかし、後者の反応機構がわかりません。あと、副生成物のZnOのLewis構造も考えてみたら、よくわかりません。これがわかれば少しは予想がつくのではと思ったのですが。
基本的なことかもしれず、お恥ずかしいのですが、ご回答頂きたく存じます。よろしくお願いします。

Aベストアンサー

反応点に関して補足します。
Sがその孤立電子対のために求核性を示すのと同様に、エーテルのO(C-O-Cの側のOがこれになります)も電子が豊富で求核性を示します。そのため、このOは求核剤の攻撃を受けにくいと言えます。
それに対して、C-O-O-CのOは、O-O結合のために、比較的電子が不足しています。したがって、こちらのOの方が求核剤の攻撃を受けやすい(すなわち求電子的である)と考えられ、したがって、Sの攻撃を受けるのはこちら側であると考えられます。
同様に、一電子還元の際にも、電子は負電荷を持っていて求核的といえるので、電子移動が起こるのはC-O-O-CのOであると考えられます。

このことと関係のある事項として、過酸化物によるアルケンからのエポキシド(オキシランまたはオキサシクロプロパンともいいます)の合成があります。過酸化物はC-O-O-Hの構造を持ち、このOが求電子的であるために、電子の豊富なアルケンと速やかに反応することになります。

Q-C三N結合(ニトリル結合)は電子求引基?

-C三N結合(ニトリル結合)の反応を考えています。
電子陰性度から考えれば電子はNに引っ張られて炭素がプラスになり、水酸化イオンなどの電子供与基と反応するという考え方はあっていますか?
あるいは窒素の不対電子+炭素との電子陰性度の違いからくる三重結合の電子から窒素が電子供与基になってなにか電子求引基のH+とかと反応するのですか?
考え方の過程も知りたいので思ったことを教えて下さい。

Aベストアンサー

-CN置換基は電子求引性であり、そのため、たとえばCH3CNの酸性度はメタンよりも強くなります。本来、「電子求引性」と言った場合には上記の議論になります。
しかし、ご質問内容は、そういうことではなさそうですね。つまり、ご質問内容というのはCNの電子求引性とは別の問題であるということです。そのことをまずはっきりさせておく必要があると思います。
その上での議論として、質問文で書かれた内容はおおむね妥当であると思います。
すなわち、CNにおいて、Cは正電荷を持ちNは負電荷を持っていると考えるのは妥当です。結果的に求核剤はCを攻撃し、求電子剤はNを攻撃します。要は、CNにおいては反応点が2か所あるということと、正電荷と負電荷の間で反応が起こるという極めてシンプルな考え方で説明できます。

なお、科学において専門用語の使用法というのは重要です。水酸化物イオンを電子供与基とは呼びませんし、CNのなかのNを取り出して電子供与基といったりはしません。


人気Q&Aランキング