ママのスキンケアのお悩みにおすすめアイテム

LC発振回路の1つであるハートレー発振回路に発振持続条件式と発振周波数foの式があるのですが、この2つの式をどのように導きだせばいいのかわかりません。どなたかよろしくお願いします。

A 回答 (2件)

遅くてすみません.



>ハートレー発振回路を用いてRやLやCなどを使って回路方程式を立てて、発振持続条件式と発振周波数の式を導くのですが、方程式を用いてどう導きだしていいのかがわかりません。

とありますが,そもそも能動素子は何で,どのようなパラメータを用いるかが,分からないと方程式自体が立てられません.hパラメータやyパラメータの場合は適当な電子回路の教科書に書かれているので,そちらを参考にすればよいと思います.
    • good
    • 1
この回答へのお礼

ご回答ありがとうございます。何とか解くことができました。ありがとうございました。

お礼日時:2008/06/26 23:23

どのレベルの回答がいいのか良く分かりませんが.



発振持続条件式は,帰還ループが正帰還になっていることを示す式で発振周波数は,帰還ループで位相関係が,正しく戻っていること(入力から,また入力に戻ってくるところまでで2πの整数倍の位相差になっている.)を示す式から,導かれます.

普通は,トランジスタのhパラメータを用いたものを良く見ますが,高周波でよく使われる,yパラメータでも,sパラメータでも,同じように求めることができます.さらに,負性抵抗という概念を導入すると,発信についての見通しが良くなります.

この回答への補足

ご回答ありがとうございます。
説明が足りてなかったようで申し訳ございませんでした。
何らかのハートレー発振回路を用いてRやLやCなどを使って回路方程式を立てて、発振持続条件式と発振周波数の式を導くのですが、方程式を用いてどう導きだしていいのかがわかりません。
よろしくお願いします。

補足日時:2008/06/16 19:42
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電子回路の発振条件について

正帰還回路で入力電圧をv1,増幅器Aへの入力電圧をvi,出力電圧をv2としたとき,
v2=Avi
vi=v1+Hv2
であり,ループ利得AH,回路全体の利得は
G=v2/v1=A/(1-AH)
ですが,
AH>1の場合,発振するというのは違う見方だと完全ではないもののなんとなく分かるような気がするんです.

でも,負帰還回路の場合,
G=A/(1+AH)
AH≫1とすれば
G≒1/H
となりますが,
発振回路も
AH≫1とすると,
G=-1/H
で利得は定数になってしまうので,
発振してしかも出力v2の振幅がしだいに
増大するというのが納得しかねます.
viがループ後AHviになってそれがまた,
増幅器Aに入るから増大した電圧がまた増大して
と考えれば納得できるような気がするんですが,
いまいちしっくり来ません.

この発振回路の原理についてかなり詳しい説明をして欲しいです.

また,発振条件は
 Im(AH)=0,Re(AH)≧1
のようですが,
Re(AH)≧1はまだしも
Im(AH):位相に関係する??が0というのは何故ですか??
電子回路に詳しい方よろしくお願いします!

正帰還回路で入力電圧をv1,増幅器Aへの入力電圧をvi,出力電圧をv2としたとき,
v2=Avi
vi=v1+Hv2
であり,ループ利得AH,回路全体の利得は
G=v2/v1=A/(1-AH)
ですが,
AH>1の場合,発振するというのは違う見方だと完全ではないもののなんとなく分かるような気がするんです.

でも,負帰還回路の場合,
G=A/(1+AH)
AH≫1とすれば
G≒1/H
となりますが,
発振回路も
AH≫1とすると,
G=-1/H
で利得は定数になってしまうので,
発振してしかも出力v2の振幅がしだいに
増大するというのが納得しかねま...続きを読む

Aベストアンサー

>> でも,V1の位相角0,Im(AH)=0:位相角0,のとき
>> Viの位相角がπ/4だとすると,
>> V1とAHViの位相差はπ/4で0にならないと思う

Im(AH)=0すなわち位相を廻す能力が無いので、入力からV1(位相角0)を入れる限りではViの位相角がπ/4になる状態は存在しない。仮にV1が過去π/4位相であったのを0に急変させれば(過渡的に)実現できるが、V1とAHViのベクトル加算ViはV1に近寄るのでやがてV1と同位相に帰す。 身近な実例は安価なTV受像器の偏向系;CR発振回路に放送局からの同期信号を注入している。


>> その辺が確実に理解できていないので


正帰還回路の基本式は
  V2/V1=A/(1-AH) である。
上式からV2は
  V2=V1A/(1-AH) である。
帰還ノードに戻る信号はV2が帰還路Hを通ったものゆえ
  HV2=V1AH/(1-AH) である。
当たり前のことだが上式のAH/(1-AH)は複素数である。複素数は絶対値と偏角で表すことができるので、AH/(1-AH)を絶対値がmで偏角がθだとする。そうすれば上式は
  HV2=V1がm倍になり位相がθずれたもの
と書けて分かりやすい。
そして帰還ノードでV1と上式が加算されてViとなる。とうぜん交流ゆえベクトル加算である。

    HV2 長さはV1のm倍で位相がθずれてる
  /
/θ
 ̄ ̄ V1 長さを1とする。

  (Vi の長さ)^2 =(1+mcosθ)^2+(msinθ)^2
           =1+m+2mcosθ
である。
Viが最大になるθはθ=0,2π,4π…のときである。
ViがA倍されたのがV2であるから、出力が最大と言ってもよい。
そうなる周波数をfoと記す。

発振状態とは外部入力が無いV1=0でループ内に振動波形が存在している状態である。ループを一巡(イチジュン)した利得|AH|<1なら周回と共に振幅が漸減するから|AH|≧1が必要条件であることは理解済みと思う。(*2)

 思考実験;
入力V1に種々の周波数を混ぜた信号を入れる。信号はループ内をグルグル回りつつ入力V1と加算される。考えやすいように|AH|=1とする。周波数foの成分は一巡後の位相差が0なので常に代数的加算になって直線的に増加してゆく。fo以外の成分は位相差が積み重なってゆくのでベクトル的な加算になったり減算になったりでfoのようには成長しない。
 すなわち、入力信号V1の中からfoの成分を選択的に増幅する回路である。一種のフィルタである。発振回路とはfo成分だけを育てあげる回路なのである。育てる元の種は電源投入時の電圧の動きだったり熱雑音だったりデジタル回路なら初期設定値である。
以上。


(*1)
複素数の偏角θ=0,2π…なら複素数の虚部は0である。AH=x+iyと書いて複素数AH/(1-AH)に代入し虚部=0と置けば、y=0すなわちIm(AH)=0を得る。これはV1から始めて順に追った考え方である。
一方、V1を考えない場合はIm(AH)=0がどこから来るのか;それは一巡のθ=0,2π,…になる周波数以外はループ上に定常的に存在できないことからである。それはそれで理解する努力が必要である。その理解は振動や音波電波の定在波や原子の軌道電子の理解に役立つ。

(*2)
一巡ごとに一定の割合が掛かる複利計算であり結果は指数関数となる。
|AH|<1ならexp(-t)で消滅、|AH|>1ならexp(+t)で成長する。
|AH|>1とRe(AH)>1は違うのか同じなのか;虚部=0の場合しか定常的に存在できないゆえ前者が後者になる。

付記1;
負帰還回路の場合;ベクトルの減算は180度反転すれば加算になるので「θ=0になる周波数」を「θ=πになる周波数」と読み替えるだけでよい。すなわち、負帰還回路でも一巡伝達関数AHの位相が180度回った所のゲインが>1なら発振回路になるのである。
付記2;
複素数AH/(1-AH)の大きさmも周波数で変化するのでは?との疑問に答えておく。
実際の回路では、foの近傍で大差なし(CR発振回路)とかfoの所でmも最大(LC、水晶、セラミック発振回路)である。


追加の質問があれば要求を。その際デジタル回路(ゲートやFF)が分かるかを教えてください。

>> でも,V1の位相角0,Im(AH)=0:位相角0,のとき
>> Viの位相角がπ/4だとすると,
>> V1とAHViの位相差はπ/4で0にならないと思う

Im(AH)=0すなわち位相を廻す能力が無いので、入力からV1(位相角0)を入れる限りではViの位相角がπ/4になる状態は存在しない。仮にV1が過去π/4位相であったのを0に急変させれば(過渡的に)実現できるが、V1とAHViのベクトル加算ViはV1に近寄るのでやがてV1と同位相に帰す。 身近な実例は安価なTV受像器の偏向系;CR発振回路に放送局からの同期信号を注入している。


>> ...続きを読む

QLC発振回路の発振周波数が理論値と実験値で合わない!!

本日LとCを使った発振回路を作ったのですが,オシロスコープで測定した発振周波数と,計算で求めた理論値とを比較してみると30%程のずれがあります.これはどのような原因が考えられるのでしょうか?

Aベストアンサー

理論式ではアンプ内のLやC成分は勿論、コイルを純粋誘導性リアクタンスと見るし、又コンデンサーを純粋な容量性リアクタンスと考えるでしょう?

でも実際はコイルは線間に静電容量が有りますし、コンデンサーにもリード線や電極に誘導性リアクタンス成分が有ります。
アンプの内部にも両リアクタンスや抵抗成分、又アンプの入力側と出力側の間の静電容量が有ります。

結局それらが複雑に絡み合い単純計算では求められません。しかしこれは理論では説明できないと言うことでは有りません。仮に各種パラメーターを考慮すれば正確に求められるでしょうけど問題の趣旨と離れるので話を簡単にしたのでは有りませんか。

QCR発振の原理

トランジスタのCR発振の原理について説明が出来る方、おおまかでもよろしいのでお願いします。

Aベストアンサー

No.2のymmasayanです。補足です。
移相回路で180度遅らせると書きましたが、参考URLの場合は180度進ませるです。
(移相回路がCRの接続の仕方で2種類あります)
進みでも遅れでも180度で反転ですので結局は同じことなのですが。

Q移相形CR発振回路について教えてください。

移相形CR発振回路についてできれば詳しく教えてください。

Aベストアンサー

以前にこの欄で同様の質問に答えた事があります。
読んで見てください。わかりにくければ補足下さい。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=165460

Q正弦波発振回路、それぞれの特徴

LC発振、CR発振、水晶発振のそれぞれの特徴や動作を教えてください。

Aベストアンサー

          長所               短所
水晶発振  周波数が格段に安定   任意に周波数を変えることが難しい
CR発振  比較的、精度・安定度が良い   高い周波数は困難
      計算値と合わせることが可能   (数十MHzくらいまで)
    (CR素子は精度の良いものが入手可能)
LC発振  高い周波数が得意     精度・安定度は悪い

基本的に、周波数可変の高周波を狙うなら、LC発振しかない。
先ずLC発振で原発振を手に入れ、何らかの方法で(PLLなど)で周波数の安定を図る。

QAM波の復調回路について

AM波復調回路として、包絡線検波回路を挙げることができる。ダイオードにAM波が加わるとダイオードの整流作用によってAM波の正または負の部分が取り出されコンデンサCが充電されるが、変調を受けた搬送波がなくなると抵抗Rを介してコンデンサは放電し、この充放電を繰り返すことによって信号波にほぼ等しい包絡線を得ることができる。この後、コンデンサCoによって直流分を阻止すれば、変調波(信号)を復調することができる。
と、教科書にありました。

図は、http://ja.wikipedia.org/wiki/%E5%8C%85%E7%B5%A1%E7%B7%9A%E6%A4%9C%E6%B3%A2に載っているのと同じで、あとは、コンデンサCoと信号を取り出すときの抵抗がつくだけです。
AMはの正または負の部分が取り出されるんじゃなくて、正の部分しか取り出せないんではないでしょうか?
また、なんで、最初にコンデンサCに充電されるだけで、抵抗には電流は流れないんでしょうか?
変調を受けた搬送波がなくなる、とはどういうことなんでしょうか?
搬送波成分はあるのになくなるという意味が分りません。
また、なんで、搬送波がなくなる??と抵抗Rを介して放電されるんでしょうか?
さらに、なんで、充放電を繰り返すことによって信号波にほぼ等しい包絡線を得ることができるんでしょうか?

かなり詳しく、そしてかなり分りやすい解説をお願いします。

AM波復調回路として、包絡線検波回路を挙げることができる。ダイオードにAM波が加わるとダイオードの整流作用によってAM波の正または負の部分が取り出されコンデンサCが充電されるが、変調を受けた搬送波がなくなると抵抗Rを介してコンデンサは放電し、この充放電を繰り返すことによって信号波にほぼ等しい包絡線を得ることができる。この後、コンデンサCoによって直流分を阻止すれば、変調波(信号)を復調することができる。
と、教科書にありました。

図は、http://ja.wikipedia.org/wiki/%E5%8C%85%E7%B5%A1%E7...続きを読む

Aベストアンサー

その教科書はあまり良いものではないですね。
あなたが疑問に思うのはもっともです。

信号の正/負に関しては他の回答者の言うとおりです。
ダイオードの向きを逆にすれば負の部分を取り出せます。

コンデンサの電圧がゼロでない限り抵抗に電流は流れます。

「搬送波がなくなる」という説明は不適切です。
搬送波の振幅がゼロになる部分をなくなると言っているのだと思いますが、
普通はそれをなくなるとは言いません。その教科書のローカルルールでしょう。

実は包絡線検波の理論的な説明は結構難しいのです。下記を参照してください。
http://asaseno.cool.ne.jp/germanium/index.html

簡単に説明すると次のようになります。
搬送波が増加している時にはコンデンサが充電されてコンデンサの電圧が搬送波の電圧に等しくなります。
(ダイオードの順方向電圧をゼロとみなす、また、信号源のインピーダンスは十分低いものとする)
搬送波がピークを過ぎて下がり始めるとダイオードが逆バイアスになり、抵抗を介して放電するためにコンデンサの電圧は徐々に減少します。
次のサイクルで搬送波が増加してコンデンサの電圧を超えるとコンデンサが充電され、コンデンサの電圧は搬送波に追従します。
このよう搬送波の1サイクルごとにコンデンサは充電と放電を繰り返します。
充電している時はダイオードから流れ込む電流と抵抗で放電される電流の差分だけ充電されます。

通常、搬送波の周波数は高いため放電時間が短く、下がる電圧はわずかで、検波された波形は搬送波のピーク電圧を線で結んだ波形に近いものになります。
ただし、抵抗による放電電圧の変化が変調波による変化よりゆっくりになると変調波を再現できなくなります。
これをダイアゴナルクリッピングまたはダイアゴナル歪みと言います。

その教科書はあまり良いものではないですね。
あなたが疑問に思うのはもっともです。

信号の正/負に関しては他の回答者の言うとおりです。
ダイオードの向きを逆にすれば負の部分を取り出せます。

コンデンサの電圧がゼロでない限り抵抗に電流は流れます。

「搬送波がなくなる」という説明は不適切です。
搬送波の振幅がゼロになる部分をなくなると言っているのだと思いますが、
普通はそれをなくなるとは言いません。その教科書のローカルルールでしょう。

実は包絡線検波の理論的な説明は結構難しいのです...続きを読む

Q移相型CR発振回路とウィーンブリッチ発振回路の違い

それぞれの仕組み(発振する仕組み)の違いは、反転回路を使うか、と非反転を使うかの違いで、
帰還率も違えば、周波数条件式も発振条件式も違うことはしらべてわかったのですが、
これらは今の生活で何に使われているんでしょうか?

テレビやラジオ、スピーカーにマイクなどに発振回路が使われているのは想像がつくのですが、
それぞれ「これを使うなら~型」と言うように、発振回路の型の違いによって使われる用途は変わってくるのでしょうか?
教えて下さい!!

Aベストアンサー

 昔のオーディオ帯の測定器には、ウイーンブリッジ発振回路を使用した信号発生器がありました。しかし周波数や振幅の正確さなどを追求するとなかなか難しい点があり、また時代がデジタルの方向に変わって来た事もあって、積分回路で三角波を作り、それを折れ線近似で正弦波に変えるタイプのファンクションジェネレータが主流になりました。
 
 現在、移相型やウイーンブリッジ型の発振回路がどこに使われているか、いろいろ考えてみたのですが、思い付きません。直接正弦波を発生する発振器としては、コルピッツ回路やハートレー回路がありますが、これらは高周波用です。低周波の発振で必要とされるのは、ほとんどがデジタル回路用の矩形波です。
 身の回りの正弦波と言うと、時報の音や電話の話中音(ツーツーという音)がありますが、これらも大抵はデジタル的に合成された音です。モデム用ICの中にも、上記話中音を発生するためのPCM回路が内蔵されていたりします。
 従って、個人的な感覚としては、あまり使われていないと思うのですが、それでもこれらの回路の勉強をしなくても良いと思っている訳ではありません。もしかしたら将来、100GHz帯の新しい発振器が開発され、それを等価回路で表したら、移相型やウイーンブリッジ型発振回路と同じだったりするかも知れませんしね。
 
 「移相型とウイーンブリッジ型の違い」という御質問には、記憶によみがえるものがあります。以下かなり個人的な思い出話になりますが、ご容赦下さい。
 
 中学生のときに、移相型CR発振器を自作したことがあります。2連の可変抵抗器を使って周波数を変化できる簡易測定器です。当時ウイーンブリッジ発振回路というものがあることも本で読んで知ってはいたのですが、抵抗とコンデンサをあのようにつないでどうして周波数が決まるのか理解できず、一方で移相型は、CRによる位相遅延回路を3段つなぐのだから、ちょうど180度位相が遅れる周波数で発振するのだという、きわめて私には分かりやすい理屈だったこともあり、移相型で作ることにしました。
 移相型の場合、本来は3連可変抵抗器が必要なのですが、2連のものしか無かったので、1段は固定にしました。全体で180度遅れれば良い訳です。
 また、発振の振幅安定化のために、普通はサーミスタを使用するのですが、田舎の中学生には入手方法がわからず、100V5Wの電球で代用しました。(サーミスタは電流を流すと発熱して抵抗が小さくなります。電球は電流を流すと発熱して抵抗が大きくなります。従って負帰還回路に入れる位置は逆になります)
 そのようにして完成した発振器ですが、いざ動作させてみると、周波数を変えるたびに、振幅がビョンビョンと変化します。周波数を速く変化させると、一旦発振が停止し、おもむろにボヨーンという感じで発振を始めたりします。いろいろ帰還量を調整しても直らず、「たぶんサーミスタでなく電球を使ったのが良くないのだ」と、原因を電球のせいにしてしまいました。
 
 発振条件式について理解されている質問者さんなら、この原因についてはもうお分かりかも知れませんね。ウイーンブリッジ回路の場合、発振条件式には周波数の項は含まれませんが、移相型の場合はもろに周波数の項が含まれます。つまり周波数を変えるたびに、ループゲインが1という状態からずれるので、電球は一生懸命追従しようとしていたのですが、なにぶん熱の時定数による遅れがあり、振幅がとんでもなく変化していたわけです。
 何年かたって、ようやくそのことに気付いた私は、押し入れから発振器を取り出して、ウイーンブリッジ型に改造しました。同じ発振器とは思えないほど、安定な振幅で発振しました。
 
 この経験で私は、「何事も最初はものまねから始る。しかし理屈をちゃんと理解しないと、一人前にはなれないな」と身にしみて思った次第です。

 昔のオーディオ帯の測定器には、ウイーンブリッジ発振回路を使用した信号発生器がありました。しかし周波数や振幅の正確さなどを追求するとなかなか難しい点があり、また時代がデジタルの方向に変わって来た事もあって、積分回路で三角波を作り、それを折れ線近似で正弦波に変えるタイプのファンクションジェネレータが主流になりました。
 
 現在、移相型やウイーンブリッジ型の発振回路がどこに使われているか、いろいろ考えてみたのですが、思い付きません。直接正弦波を発生する発振器としては、コルピ...続きを読む

Q振幅変調方式について

今振幅変調回路について学習しています。
それで信号波を搬送波にのせて変調波に変える原理を回路から考察しているのですが、その回路に使用されている搬送波側のトランジスタ、信号波側の変圧器の役割、他にLとCが並列になっている部分でどのように変調波ができているのかの三点がわかりません。考察しているのはコレクタ型変調回路です。何分まだ勉強中で未熟なものでわかりにくい書き方になってしまいましたが、よろしくお願いします。

Aベストアンサー

 
 
>> トランスの役目はVccの電圧を増幅している? <<

 トランスは巻線相互が直流的に切り離されるので、信号側のアンプを 変調回路のVccと関係なくできるので回路設計の自由さが増します。 またトランスは 電圧を高く昇圧できるので、信号アンプを低電圧で動くアンプにできます。ご質問はこのことのようですね。


それから、トランスの場合は「増幅」ではなく普通「変圧,昇圧,降圧」と言います。慣れないと使い分けにとまどうかも知れませんね、「増幅」は

 他のエネルギ源(電源とか)
     ↓
   ┏┷┓
入→┨  ┠→出力
力  ┗━┛

こんな状態を言う用語です。トランスは上図の「他のエネルギ源」が無く(受動素子と言います)、エネルギは素通りするだけです。

(続けて余談;しかもどちら向きにも通れます。あなたが例示した回路でも、搬送波がトランス経由で信号アンプの出力に入り込むルートもありなのです。実際そうなってしまうと、信号アンプは低周波しか対処できないのが普通なので種々の不具合が生じます。それを防ぐために、搬送波がトランスに行く前の C4コンデンサで搬送波をグランドに落としてます。トランスのインダクタンスとC4でLCローパスフィルタを構成してます。)



 なお、普通の音声信号などは直流成分が無いのでトランスで切っても構わないですが、もし直流成分も必要な場合はトランスは使いません。
 
 

 
 
>> トランスの役目はVccの電圧を増幅している? <<

 トランスは巻線相互が直流的に切り離されるので、信号側のアンプを 変調回路のVccと関係なくできるので回路設計の自由さが増します。 またトランスは 電圧を高く昇圧できるので、信号アンプを低電圧で動くアンプにできます。ご質問はこのことのようですね。


それから、トランスの場合は「増幅」ではなく普通「変圧,昇圧,降圧」と言います。慣れないと使い分けにとまどうかも知れませんね、「増幅」は

 他のエネルギ源(電源とか)
  ...続きを読む

Q反転増幅器の周波数特性

入力電圧V1=300mV、R1=10kΩ、Rf=100kΩの反転増幅回路で周波数を100Hzから200kHzまで徐々に変化させていくと、10kHz以降から位相差が生じて、出力電圧、利得が減少しはじめました。どうしてこんなことが起きるのでしょうか?その根拠がわかりません・・・
そしてなぜ10kHzから生じたのかという根拠もわかりません。
どなたかご回答の程よろしくお願いします。

Aベストアンサー

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増幅回路における周波数特性が右下がりになる理由を理論的に説明したいのですが、回路にコンデンサが使われていないので、カットオフ周波数が求められなくて困っています。オペアンプは751です。右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね? http://okwave.jp/qa3048059.html

非反転増幅、反転増幅の回路実験を行ったのですが、1kHzや100kHz を入力すると、約10倍の増幅が確認できたのに対し、1MHzを入力した場合、約1.2倍となりほとんど増幅が確認できませんでした。 これはなぜでしょうか http://okwave.jp/qa3055112.html

反転増幅回路と非反転増幅回路に周波数特性に違いがあるらしいのですがそれがどういった違いなのかわかりません。わかる方いらっしゃいましたら教えてください。 http://okwave.jp/qa4078817.html

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増...続きを読む

Q電圧利得とは?

電圧利得とはそもそもどういうものなのでしょうか。
また、何か公式のようなものはあるのでしょうか。
初歩的な質問で申し訳ないのですが、ご回答よろしくお願いします。

Aベストアンサー

こんばんは。

電圧利得とは、
入力電圧に対する出力電圧の比を取って、
それを2乗して、
それの対数(底は10)を取って、
それに10をかけたものです。

入力電圧をVin、出力電圧をVout と表せば、
電圧利得 = 10・log(Vout/Vin)^2 = 20・log(Vout/Vin)
です。


こちらには、電圧利得以外の利得についても書かれています。
利得のことを「ゲイン」と言う人が多いです。
http://ja.wikipedia.org/wiki/%E5%88%A9%E5%BE%97_(%E9%9B%BB%E6%B0%97%E5%B7%A5%E5%AD%A6)

以上、ご参考になりましたら幸いです。


人気Q&Aランキング