プロが教えるわが家の防犯対策術!

微分方程式なのですが、
log|y-1|=-log|x+2|+Cという途中式があります。これから最終的にはy=の式にしたいのですがlogを消去するにはどうすればいいのでしょうか?答えはy=C+1/x+2になるらしいですが・・・
初歩的な質問ですいませんが教えてください

このQ&Aに関連する最新のQ&A

A 回答 (4件)

つづき。



|(y-1)(x+2)| = 定数

y≧1 かつ x≧-2 あるいは y≦1 かつ x≦-2 のとき
y-1 = 正の定数/(x+2)
y = 正の定数/(x+2) + 1

y≧1 かつ x≦-2 あるいは y≦1 かつ x≧-2 のとき
y-1 = 負の定数/(x+2)
y = 負の定数/(x+2) + 1

合いませんね。
1と定数の位置が逆ですね。
    • good
    • 0

私も簡単に計算してみましたが、


exp(log|y-1|) = exp(log|x+2|^-1 + c)
y-1 = c'/x+2
(cはたぶん定数?なのでexp(c)も定数)
y = c'/x+2 + 1
でsanoriさん同じ結果になりました。「答え」が間違っている可能性はないでしょうか?
    • good
    • 0

途中式のCをlog(e^c)とおいてまとめればlogは消去できるはずです。


最終的なCと途中式のCは実際には別のものなので、途中式のCはC'などにしておくといいかと思います。
あと、今ちょっと計算してみたのですがどうもその答えにはならないような気がします。
    • good
    • 1

こんばんは。



log|y-1| = -log|x+2| + C
log|y-1| + log|x+2| = C  ・・・(あ)
log(|y-1|・|x+2|) = C  ・・・(い)
|y-1|・|x+2| = e^C
|(y-1)(x+2)| = e^C

C が定数ならば、e^C も(別の)定数
|(y-1)(x+2)| = 定数

(あ)から(い)のところがポイントなのでした。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qlogのはずし方

対数の計算問題で値を求めるものですが、

(1)log3 15-log3 9=log5/3
(2)log2 40+log2 8=log5
(3)log2 1/3+log8 24=1-2/3 log2

上のように途中までは問題を解くことができたのですがlogをはずすことができません。解き方を教えてください。よろしくお願いします。

Aベストアンサー

なんか計算間違っているようですよ。
(1)log3 15-log3 9=log3 3+log3 5-log3 3-log3 3=1+log3 5-2=
log3 5-1=log5/log3-1=(1-log2)/log3-1=(1-0.3010)/0.4771-1=0.4651
(2)log2 40+log2 8=3log2 2+log2 5+3log2 2=3+log2 5+3=6+log2 5=
6+log5/log2=6+(1-0.3010)/0.3010=6+2.3222=8.3222
(3)log2 1/3+log8 24=log2 1-log2 3+log8 8+log8 3=0-log3/log2+1+log3/log8=
1-log3/log2+log3/3log2=1-0.4771/0.3010+0.4771/3/0.3010=1-1.5850+0.5283=-0.0567

log2・・0.3010
log3・・0.4771
log7・・0.8451
覚え方は「さわいちはしなない、はしごをひとつ:沢一は死なない、はしごを一つ」

なんか計算間違っているようですよ。
(1)log3 15-log3 9=log3 3+log3 5-log3 3-log3 3=1+log3 5-2=
log3 5-1=log5/log3-1=(1-log2)/log3-1=(1-0.3010)/0.4771-1=0.4651
(2)log2 40+log2 8=3log2 2+log2 5+3log2 2=3+log2 5+3=6+log2 5=
6+log5/log2=6+(1-0.3010)/0.3010=6+2.3222=8.3222
(3)log2 1/3+log8 24=log2 1-log2 3+log8 8+log8 3=0-log3/log2+1+log3/log8=
1-log3/log2+log3/3log2=1-0.4771/0.3010+0.4771/3/0.3010=1-1.5850+0.5283=-0.0567

log2・・0.3010
log3・・0.4771
log7・・0.8451
...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q指数関数の両辺の対数をとる・・・の意味

高校数学IIの分野の指数関数、対数関数に関する質問をします。

よく問題の解説中で、指数関数の「両辺の対数をとって…」という表示があり、式変形をしていますが、この意味はどういうことなのでしょうか?

 例えば、1次方程式の両辺の対数をとっても方程式は成立するのでしょうか、それとも両辺の対数をとることができるのは指数関数だけなのでしょうか?

 例えば (1)[指数関数の逆関数を作る] (2)[指数関数の両辺の対数をとる] ←(1)と(2)は同じ結果が表示されると思いますが、どのように関連しているのでしょうか?

 以上、対数という概念を理解したいので質問します。なにか意見があれば、よろしくお願いします。

Aベストアンサー

こんにちは。

>指数関数の「両辺の対数をとって…」という表示があり、式変形をしていますが、この意味はどういうことなのでしょうか?

通常、式変形の1つだけを取り出しても、意味ははっきりしないと思います。
例えば2次関数の平方完成では、1つ1つの式変形の意味というよりは、
最終的に平方完成された式に意味があるのではないかと思うのです。

そういった意味で、「log をとる」のはどういった場合かを考えてみますと、
・微分するとき(対数微分法と言います)
・積分するとき(区分求積法と言います)
・積を和に直すとき(例えば相加・相乗平均の証明など)
こういった目的の下、「log を取りに行く」訳です。
(1次関数の log をとるのはないと思います。
なぜならば log をとったほうが、より複雑になってしまうからです)

log というのはどういう性質があるかと言うと、
「指数のみに着目する」ということになります。

昔、天文学者が距離を測るのに、桁数だけ分かれば良いと思っていたので、
桁数だけ分かるようにしたものが対数です。(実際には先頭の数字とかも分かるが)
例えば地球から2000000000kmか2200000000kmかはあまり変わらないなあと
言う感覚です。(どちらも大きすぎる)
収入を言うときに「あの人は8桁だよ」「いや9桁だよ」なんていうのと同じです。

>対数という概念を理解したいので、なにか意見があれば、よろしくお願いします。
数2の三角関数、指数・対数関数というのは数3への準備と言う側面があり、
数3は大学数学の準備という側面があります。
変数を複素数にとると、指数関数と対数関数は逆関数ではありません。
是非「複素解析」を勉強してください。稲妻に打たれたような感じになるでしょう。
あまりの面白さに、「生きてて良かった」、いや、「生まれてきてよかった」
とさえ思えるかもしれません。

こんにちは。

>指数関数の「両辺の対数をとって…」という表示があり、式変形をしていますが、この意味はどういうことなのでしょうか?

通常、式変形の1つだけを取り出しても、意味ははっきりしないと思います。
例えば2次関数の平方完成では、1つ1つの式変形の意味というよりは、
最終的に平方完成された式に意味があるのではないかと思うのです。

そういった意味で、「log をとる」のはどういった場合かを考えてみますと、
・微分するとき(対数微分法と言います)
・積分するとき(区分求積法...続きを読む

Q自然対数をとる?とは・・・

y=x^x 両辺の自然対数をとると logy=xlogx
これはどういうことなのかさっぱりです。

ログについては、たとえばlog(小さい2)8 なら2を何乗かしたら8になります ってことは2を3乗すると8だから log(低?が2)8の答えは3だ!
 ということなどは分かるのですが、一番上の式の意味と自然対数をとるという意味が分かりません。
「自然対数」とか「常用対数」とか言葉はしっているのですが、内容がいまいち分からなくて・・・
お願いします!!!

Aベストアンサー

2^3=8 → log(2)8=3 
左の等式において、両辺にlog(2)をつけてみると
  log(2)2^3=log(2)8
  3log(2)2=log(2)8
     3=log(2)8  と最初の右の等式と同じに変形できます。

このように、等式(両辺とも正)は、両辺を底が同じ対数の真数に入れる
ことができます。
底がeのとき、自然対数をとるといってます。

だから、y=x^xはeを底とする対数をとって、
 log(e)y=log(e)x^x=xlog(e)x
とできます。(普通、(e)は省略されますが)

Q∫1/(x^2+1)^2 の不定積分がわかりません

∫1/(x^2+1)^2 の不定積分がわかりません

答えは

( 1/2 )*( (x/(x^2+1)) + tan-1(x) )

となるようですが、過程がまったくわかりません。
部分積分、置換積分、部分分数分解をためしてみましたが、できませんでした・・・。

見づらく申し訳ありません。画像を参照していただければと思います。
よろしくおねがいします。

Aベストアンサー

1/(x^2+1)^2 = (x^2+1)/(x^2+1)^2 - x^2/(x^2+1)^2
= 1/(x^2+1) - (1/2) x・(2x)/(x^2+1)^2
と分解しよう。

∫{ x・(2x)/(x^2+1)^2 }dx は、
∫{ (2x)/(x^2+1)^2 }dx が容易であることを用いて、
部分積分する。

∫{ 1/(x^2+1) }dx は、arctan の定義式だから、
知らなければどうしようもない。
(x=tanθ と置くのは、結論の先取で好ましくない。)

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q長さの単位であるAの上に丸がついた記号は何mですか。

こんばんは。Aの上に丸がついた単位をよく見ますが、これは「オームストローム」のことでしょうか。違うのであればこの単位をメートルに直したときどのような値をとるのか教えてください。

Aベストアンサー

この答えでいいのでしょうか。

☆Å(オングストローム/angstrom) 
長さの補助単位。
10の-10乗=百億分の1メートル。電磁波の波長測定や、原子物理学・結晶学・分子学などで用いる。
記号 Å または A で表す。
スウェーデンの物理学者オングストレームの名にちなむ。

参考URL:http://www.sun-inet.or.jp/~nao2/jiten/sonota.htm

Q1/(1-x)や1/(1+x)の積分形

あまりに簡単な問題ですいません。
1/(1-x)の積分形
1/(1+x)の積分形
を教えてください。

それと1/xの積分形はLog(x)と本に載っていますが
Ln(x)でも良いのでしょうか?

30歳を過ぎて頭がぼけてしまいました。
なにとぞ宜しく御願いします。

Aベストアンサー

∫1/(1-x)dx=-log(1-x)+C
∫1/(1+x)dx=log(1-x)+C

1/xを積分したときのlog(x)(正しくはlog|x|)は
常用対数(底が10)ではなく自然対数(底がe=2.71828183...)
なのでLn(x)と同じ意味です

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qlogの微分を教えてください。

logの微分を教えてください。
「^」とかあっても、よくわからないので、できれば、画像で><
今月15日の定期試験に向けて勉強していますが、答えがないので、わかりません。
そんな問題があと20題ほど。
答えだけでも結構です。解答プロセスはなんとか勉強しますが、
今は自力で自信のある解答を導くことができません。

どうぞお願いいたしますm(xx)m

Aベストアンサー

答えだけでいいならば、分母からlogeを取り除けば正解です。


このQ&Aを見た人がよく見るQ&A