人に聞けない痔の悩み、これでスッキリ >>

単振動する質点について、その1周期についての運動エネルギーの平均値と位置エネルギーの平均値は等しいのはなぜですか?

このQ&Aに関連する最新のQ&A

A 回答 (6件)

「なぜ」という質問に答えるのはとても難しいのですが~。



つまるところ、「単振動の場合はたまたまそうだ」ということになってしまいます。

どこがたまたまかというと、たまたま、エネルギーの形が、

 E = mv^2/2 + kx^2/2

という形ですよね~。(^2は肩に上付きの2で2乗の意味。)同じことですが、運動量 p=mvなので、ほんとは、

 E = p^2/(2m) + kx^2/2

と書くほうがわかりやすいんですけど。この形で、p^2 と x^2 の形がどちらも「たまたま」2乗で、似てるところがポイントです。(v^2とx^2と言っても同じこと。)

運動エネルギーのほうはともかく、位置エネルギーが2乗なのは、「たまたま」そういう系を考えてるからなので、要するに運動エネルギーと位置エネルギーの平均値が等しくなるのも、「たまたま」ということになります。

しいて「たまたま」でなく必然の部分を言うと、振動を考えるときには、x^2が最もシンプルで基本的な形ということですね。運動エネルギーのほうも偶関数で一番シンプルなのがv^2ですし。だから一番基本的なもの(単振動)を考えると両方のべきが2乗になるので、それが原因で平均値が等しくなるわけです。

ただし、「たまたま」といっても、どんな系でも、小さい振動を考えると(xが小さいときには、x^2≪x^4≪x^6… なので)普通はこの一番基本的なものが実現するので、非常に重要なケースなんですけどね。

実は、物理における p と x の役割はある種の対称性があるんですよ~。解析力学や量子力学を学習されたことがあると見たことあると思いますが、pとxは対称(みたいなかんじ)なんです。だから、エネルギーの式で、両方とも2乗で入ってくると、平均値がちょうどぴったり等しくなってしまうのですよね~。

えー、じゃあ、pとxが対称なところを説明しましょうか。。。

運動方程式が単振動の場合、mv'=-kx ですが、p=mvより、
p' = - kx = - dE/dx
であり、また、p=mv自体が、
x' = p/m = dE/dp
です。。

つまり、p'=-dE/dx と x'=dE/dp です。。。

ここで目を細めると、マイナスがぼやけて見えなくなります(笑) すると、pとxの役割がちょうど裏腹になってるのが見えてくるはずです。(マイナスもあるし、ほんとのほんとに対称なわけではないですが。)

以上は大学生向けの答え…。

高校生向けだとすると、単振動だと、x = a sin(ωt+φ) ですが、これに対して速度は、v = aωcos(ωt+φ) となります。どちらも三角関数で、時間の原点をずらすと、(振幅は別として)同じ関数になります。ところが、位置エネルギー∝x^2、運動エネルギー∝v^2 で同じ形なので、平均すると同じになるというわけ。

ん?「振幅が違うのは気にしないのか?」って? 気にしなくていいのです。なぜなら、振動の過程でエネルギーが保存しつつ、エネルギーが位置エネルギーと運動エネルギーの間でやり取りされるわけだから、

 (位置エネルギーの最大値)
 =(全エネルギーの値)
 =(運動エネルギーの最大値)

ということになり、エネルギーで見たときの振幅は等しくなるはずだから。

まーしかし、これも突き詰めると、やっぱり、エネルギーが∝x^2と∝v^2になってることと、xとvが対称に出来てることに帰着するので、やっぱりそこが「なぜ」の答えになります。
    • good
    • 0
この回答へのお礼

ありがとうございます。
x = a sin(ωt+φ) になりますが、これに対して速度は、v = aωcos(ωt+φ) たしかに、どちらも三角関数で、時間の原点をずらすと、同じ関数になりますね。
位置エネルギー∝x^2、運動エネルギー∝v^2 は同じ形だから、平均すると同じになるは当たり前ですね。

お礼日時:2008/07/10 09:41

#1の回答者です。


その後、気づきましたが、
私の回答は、ご質問に答えた説明になっていませんね。
失礼しました。
    • good
    • 0

あ。

。すみません、話の本筋には関係ない部分ですが、

> x^2≪x^4≪x^6… なので

は書き間違いで、

x^2≫x^4≫x^6≫…

です。わかりますよね~。たとえば、x=0.1ぐらい小さいとすると、

0.01≫0.0001≫0.000001≫…

ですからね。。偶関数だけ考えてるのは、深い意味はないですが、そのほうが自然だから。x^1 だと、振動せずに、質点は∞遠方に飛んでいってしまいます。
    • good
    • 0

ビリアル定理によります。

    • good
    • 0

「平均値」が等しいことに物理学的には意味はありません。


計算すればそうなる、というだけです。
物理学的に重要なことは、運動エネルギーと「バネ」の(位置)エネルギーの和が一定なことです。
位置エネルギーの「0」点をどこにおくかで、位置エネルギーの数値は異なりますから、平均値は一致しなくなります。
・・バネの場合、伸びが「0」の点を位置エネルギー「0」とすることが理解し易いので、普通はそう扱いますが、任意の位置を「0」点に選べます。
最も縮んだ位置を「0」点に選ぶと、もう平均値は合致しません。
    • good
    • 0

こんにちは。



エネルギー保存の法則、この場合は力学的エネルギーの保存則があるからです。

単振動している限りは、どの瞬間でも、位置エネルギーと運動エネルギーの和は一定です。
どの瞬間でも和が一定ということから、
位置エネルギー + 運動エネルギー = 定数その1

両辺を時刻t(時間)で積分すれば、
∫[t=0→T]位置エネルギー・dt + ∫[t=0→T]運動エネルギー・dt = ∫[t=0→T]定数その1・dt = 定数その2

ここで、Tは振動周期です。


両辺をTで割れば、
1/T・∫[t=0→T]位置エネルギー・dt + 1/T・∫[t=0→T]運動エネルギー・dt = 1/T・定数その2
1/T・∫[t=0→T]位置エネルギー・dt + 1/T・∫[t=0→T]運動エネルギー・dt = 定数その3

ここで、1項目の
1/T・∫[t=0→T]位置エネルギー・dt
が何かと言えば、1周期の位置エネルギーの平均値です。

2項目の
1/T・∫[t=0→T]運動エネルギー・dt
が何かと言えば、1周期の運動エネルギーの平均値です。

よって、
位置エネルギーの平均値 + 運動エネルギーの平均値 = 定数その3
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q単振り子の運動方程式

重力加速度g、質量m、紐の長さl、空気抵抗無視。

単振り子の運動方程式はこうなりますよね。
mlθ"=-mgsinθ
これがよくわからないのです。
どういう座標系についての運動方程式なのですか?

軌道にそってx軸を定めると
θl=x
mx"=-mgsinθ  軌道に沿った運動方程式?
⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの?
そしてこれの一般解はどういう風になりますか?
初期条件としてt=0でθ=φとします。

Aベストアンサー

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」などとわざわざ断っていないわけです。
極座標系に移行したことで問題の本質はx(t), y(t)の代わりにl(t), θ(t)を求めることに帰着します。大抵の場合はひもは伸び縮みしないと仮定しますのでlについて解く必要はなく、θについてのみ解くことになります。その方程式が
ml(d^2θ/dt^2)= -mg sinθ  (3)
なわけです。

しかしこの方程式は初等関数の範囲では解くことが出来ません。そこで初等物理の範囲ではθが小さい場合に限って問題を考えることにし、
sinθ≒θ  (4)
の近似を行って解きます。このとき(3)は
ml(d^2θ/dt^2) = -mg θ  (5)
となります。これの解き方はいろいろあります。線形微分方程式の理論を知っていれば解は直ちに
θ= C sin{√(g/l) t+α} ←Cは定数  (6)
だと分かります。αはC sinα=φを満たす定数です。
2階の微分方程式ですが初期条件が「t=0でθ=φ」の一つしか与えられていないので、定数が一つ未定のまま残ります(*1)。

愚直に微分方程式を解くのであれば下のようにやります。
l(d^2θ/dt^2)(dθ/dt) = -g θ(dθ/dt)
d/dt {(dθ/dt)^2} = -(g/l) d/dt (θ^2) ←両辺に(dθ/dt)をかけた上で、積の導関数の公式((y^2)'=2y y')を逆に使った
(dθ/dt)^2 = -(g/l) θ^2 +C1 ←C1は積分定数
dθ/dt = √{-(g/l) θ^2 +C1}  (7)
ここでθ=√(l/g)√C1 sinψと変数を変換すると
dθ/dt = √C1√(1-sin^2 ψ)  (8)
を経て
√(l/g)√C1 cosψ dψ = √C1 cosψ dt  (9)
と変形でき、両辺を積分することで
√(l/g) ψ= t+C2 ←C2は積分定数  (10)
を得ます。θの表式に戻すと
θ=√(l/g)√C1 sin{√(l/g) (t+C2)}  (11)
となります。これは本質的に(6)と同じ式です。初期条件「t=0でθ=φ」を代入することで
φ=√(l/g)√C1 sin{√(l/g)C2}  (12)
を得ます。これを使うと(11)からC1, C2のいずれかを消去できます。初期条件がもう一つあれば運動は一意に定まります(脚注参照)。

もちろん、「軌道に沿ってx軸を定める」でも解けます。この場合の運動方程式は
m(d^2 x/dt^2)= -mg sin(x/l)  (13)
となります。本質的に(3)と同じであることは申し上げるまでもなく、同様に解くことができます。

考え方は上記でよいはずですが中間で計算ミスがあるかも知れませんので、ONEONEさんご自身でも確認しながら読んで頂けると幸いです。

*1 もし初期条件が「t=0でθ=φまでおもりを持ち上げて手を放す」という意味であれば、「θの最大値はφ(厳密には|φ|)」という条件が新たに加わるので運動は一意に定まります。この場合はφsinα=φからα=π/2、よってθ=φsin{√(g/l) t+(π/2)}=φcos{√(g/l) t}と求めることができます。

まず座標系についてのお話をします。下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q平均分子量

平均分子量についてイマイチわかりません。高校生レベルで教えてください。

Aベストアンサー

>以下の内容は.高等学校で教えているのでしょうか。
>モル凝固点降下.モル沸点上昇.(気体の)分圧.浸透圧
これは高校化学で教えています。

みなさんの言うとおり、分子量×割合(分圧)で計算します。
平均分子量は見かけの分子量をあらわすので、その名のとおり、平均値です。
空気の場合は、窒素(分子量28)が78%、酸素(分子量32)が22%とするとこのとおり。
28×0.78 + 32×0.22 = 28.88(平均分子量)

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q運動エネルギーの平均値

水分子の運動エネルギーの平均値をf:運動の自由度(この問題では分子数が216なのでf=6×216-6)、T:平均温度、k:ボルツマン定数を用いて
f×k×T/2
で求められるらしいのですがこれによって出た値は水分子が216分子での運動エネルギーの平均値または1分子での運動エネルギーの平均値のどちらなのでしょうか?
わかる方いらっしゃったら助けてください。

Aベストアンサー

例えば、分子の数が200個と200万個の場合を考えて見ればよいのでは?
分子1個の運動エネルギーだとすると、約1万倍になるのはおかしいですよね?
したがって、全分子合わせての平均値でしょう。

Q空気抵抗の式について

空気抵抗は次式で求められるそうですが、なぜ2で除すのか理解できません。
      F=P*C*S*V^2/2
F:空気抵抗、P:空気密度、C:空気抵抗係数
S:投影面積、V:速度

私なりに考えますと、投影面積(S)に速度(V)をかけてさらに空気密度をかけることで移動した空気の質量が求られ(S*V*P)、その空気は毎秒静止状態から速度Vまで加速されるので加速度がVとなり、力は質量と加速度の積より空気の密度*加速度となり(P*S*V^2)、結局Fは空気抵抗係数を式に加えることで、
      F=P*C*S*V^2
となり、2で除する必要がない気がするのですが・・・
宜しくお願い致します。

Aベストアンサー

 
 
>> 物体は1秒間にVm進み、気体のほうは1秒間に1/2Vm進む、つまり物体に追い越される。「物体が気体を追い越しながら気体を押す」という点が理解し難い。 <<

 (申し訳ありません!この質問忘れてましたご免なさい。)


 メートルとか秒という巨視的なスケールで考えずに、気流の微小体積部分が微小時間の間に‥とイメージしましょう。物理学全般の定石です。

 「追い越しながら加速」ができるのは、物体の固体摩擦と流体の粘性摩擦があるためです。お互いがこすれ合うだけで相手を加速/減速できますよね。 流体の中では 微細部分どうしもこすれ合ってます。だから物体の表面からもらった速度が 広い範囲に次々と分配されて広がって薄まってゆきます。

 No.4の回答も微小な速度変化のつもりで書きました。(巨視的なスケールで考えてしまうと、V は直線変化と限らないので係数が 1/2 である説明になりません。)
これの元ネタは 力学エネルギの定義 です; 力Fで動いた距離dxの積 Fdx がエネルギの定義、 微小距離 dx の間の速度変化は直線と見なされるので時間積分して距離を求めると係数 1/2 が登場する‥というやつです。 で、ベルヌーイの定理の式は エネルギ保存の法則の式 そのまんまですから 係数 1/2 も素のママで登場してます。それが空気抵抗の式にも引き継がれてる、、、という系図です。



 余談;
 空気抵抗は、速度の1乗で効く「粘性抵抗」と、速度の2乗で効く「慣性抵抗」があります。 どちらも運動量保存の法則によるものです。 前者は 流体が物体表面をなでて通る際に物体の運動量を分与され、それが流体分子同士のランダム衝突でバトンタッチされて物体表面からどんどんバケツリレー式に汲み出されてしまう現象です。 後者は 流体分子が物体と正面衝突して速度V に加速される際に物体側の運動量がモロに減る現象です。
 大胆(かつ不正確)に例えれば、槍のような棒が飛んでる場合、前者は棒の側面を空気がなでる抵抗、後者は棒の正面の面積が空気と正面衝突する抵抗です。
 後者の場合、あまりに急な衝突で 周辺とのやり取りが間に合わないと いわゆる「断熱圧縮」になって空気が高温になります。スペースシャトルで、その高温空気が機体の内部に侵入し、金属が熔けて空中分解に至って乗員が死亡した事故が有名です。(事故当時 「 超音速で空気とこすれたための摩擦による熱が原因 」 という報道説明がよくありました。クルマのブレーキ過熱などの日常経験からの演繹でしょうが、流体力学的に正しいのは粘性抵抗の方ではなく慣性抵抗。後者が圧倒的に大きいです。超音速ゆえ断熱圧縮になり物体先端に集中しました。)

http://oshiete1.goo.ne.jp/kotaeru.php3?q=908588
http://oshiete1.goo.ne.jp/kotaeru.php3?q=901153

 もし流体に摩擦が無かったら; 上記の「粘性抵抗」も「慣性抵抗」も「揚力」も起きません。
 
 

 
 
>> 物体は1秒間にVm進み、気体のほうは1秒間に1/2Vm進む、つまり物体に追い越される。「物体が気体を追い越しながら気体を押す」という点が理解し難い。 <<

 (申し訳ありません!この質問忘れてましたご免なさい。)


 メートルとか秒という巨視的なスケールで考えずに、気流の微小体積部分が微小時間の間に‥とイメージしましょう。物理学全般の定石です。

 「追い越しながら加速」ができるのは、物体の固体摩擦と流体の粘性摩擦があるためです。お互いがこすれ合うだけで相手を...続きを読む

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む


人気Q&Aランキング