ママのスキンケアのお悩みにおすすめアイテム

オペアンプの閉ループゲイン、開ループゲインとはそもそも何なのでしょうか?
根本的なとこがわかりません。
どなたかよろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

[図6.1-41]を見てください。


これが開(オープン)ループゲインです。(青色)
(フィードバックをかけていないときの利得ー周波数特性)
http://my1.interlink.or.jp/~md0858/series4/densi …

70Hzくらいまでは100dBの利得がありますが、より高い周波数では-6dB/oct(=-20dB/decade)でどんどん下がっていき、7MHzくらいで0dBとなります。
(最大利得と周波数特性はオペアンプの種類によって異なるが、この”傾向”はすべてのオペアンプについて言える)

[図6.1-43]を見てください。
例えば80dB(60dB)のフィドバックをかけたとすると、利得は20dB(40dB)になりますが、利得一定の周波数幅がうんと広くなることにお気づきでしょうか?
これが閉ループゲインです。

一般に、オペアンプの開ループゲインは100dB以上ありますが、これを開ループで使うことは滅多にありません。
周波数特性が問題にならないコンパレータのときくらいのものです。

参考URL:http://my1.interlink.or.jp/~md0858/series4/densi …
    • good
    • 3
この回答へのお礼

よくわかりました。ありがとうございました。

お礼日時:2008/07/14 21:52

開ループ....ループが開いている


閉ループ....ループが閉じている

という意味で使っています。それはわかっていますか?
つまりその意味がわかっていますか?

ここで言うループとはフィードバックループです。
フィードバックループが開いているということは、ようするループになっていない、つまりフィードバックがされていない場合です。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q反転増幅器の周波数特性

入力電圧V1=300mV、R1=10kΩ、Rf=100kΩの反転増幅回路で周波数を100Hzから200kHzまで徐々に変化させていくと、10kHz以降から位相差が生じて、出力電圧、利得が減少しはじめました。どうしてこんなことが起きるのでしょうか?その根拠がわかりません・・・
そしてなぜ10kHzから生じたのかという根拠もわかりません。
どなたかご回答の程よろしくお願いします。

Aベストアンサー

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増幅回路における周波数特性が右下がりになる理由を理論的に説明したいのですが、回路にコンデンサが使われていないので、カットオフ周波数が求められなくて困っています。オペアンプは751です。右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね? http://okwave.jp/qa3048059.html

非反転増幅、反転増幅の回路実験を行ったのですが、1kHzや100kHz を入力すると、約10倍の増幅が確認できたのに対し、1MHzを入力した場合、約1.2倍となりほとんど増幅が確認できませんでした。 これはなぜでしょうか http://okwave.jp/qa3055112.html

反転増幅回路と非反転増幅回路に周波数特性に違いがあるらしいのですがそれがどういった違いなのかわかりません。わかる方いらっしゃいましたら教えてください。 http://okwave.jp/qa4078817.html

関連する質問を紹介しますので、この回答を参考にレポートを書いてください。

μPC741というオペアンプを使って反転増幅の周波数特性をG=0,10,20dBと3種類測定しました。
(1)3種類とも利得が-3dBになる高域遮断周波数が約40kHzになりました。理論値と比較したいのですが理論式の導出がわからない
(2)周波数をあげると生じる入出力の位相差の原因とその理論式(たぶんスルーレートが関係すると思うのですが)
(3)位相差と利得の低下にはどんな関係があるのか http://okwave.jp/qa3510524.html

基本的な反転増...続きを読む

Qループゲインと閉ループ利得、開ループ利得の関係

ループゲインと閉ループ利得、開ループ利得の関係

OPアンプについて疑問があります。
よく左下図のような、A = Aβ * A_NF のようなボード線図を目にします。
グラフから、「 (開ループ利得) = (ループゲイン) × (閉ループ利得) 」のように読み取れます。

しかし、よく見る右下図のような反転増幅回路を例に考えると、
開ループ利得をAとしたとき、
 ・(ループゲイン) = Aβ=A * R1/(R1+R2)
 ・(閉ループ利得) = -R2/R1
であり、
  (ループゲイン) × (閉ループ利得) = -A * R2/(R1+R2)
なので、「 (開ループ利得) = (ループゲイン) × (閉ループ利得) 」に矛盾します。

どこが間違っているのでしょうか。
宜しくお願いします。

Aベストアンサー

回答が中途半端でしたので補足します。

  式 A*R2/(R1 + R2) (6)

 で 閉ループ利得が大きい場合、たとえば40dBの場合 式(6)

 で R2 = 100*R1 とおいて代入すると


  A*100*R1/(R1 + 100*R1) = 0.99*A

 となりますので閉ループ利得が大きければ「 (開利得) = (オープンループ利得) × (閉ループ利得) 」に矛盾しないといえます。閉ループ利得が小さくなってくると誤差が大きくなってくるので少しずつ矛盾してゆくことにはなります。

Q反転増幅器のカットオフ周波数の求め方

基本的な反転増幅回路における周波数特性が右下がりになる理由を理論的に説明したいのですが、回路にコンデンサが使われていないので、カットオフ周波数が求められなくて困っています。
オペアンプは751です。
右下がりになる理由はカットオフとオペアンプの周波数特性によるものですよね?



   

Aベストアンサー

式が少し違うところがありますが、Fcutは合っています。
V(t)=Asin(2πft)  Aは最大値(片振幅)
dV/dt=2πfAcos(2πft)  t=0のとき、[dV/dt]max=2πfA=SR
よって、f=SR/2πA (あなたの式には2が無い)
SR=0.5[V/μs] A=8[Vp0] とすると、f=0.5/2/3.14/8=0.020[MHz]=20[kHz] (あなたの計算結果と一致)
以上はあなたに従って最初から8Vで計算しましたが、電源電圧(例えば15V)で上限値を求めておくことも必要だと思います。

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Q遮断周波数のゲインがなぜ-3dBとなるのか?

私が知っている遮断周波数の知識は・・・
遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
<遮断周波数の定義>
出力電力が入力電力の1/2となる周波数を指す。
電力は電圧の2乗に比例するので
Vout / Vin = 1 / √2
となるので
ゲインG=20log( 1 / √2 )=-3dB
となる。

ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
となるのでしょうか?
定義として見るにしてもなぜこう定義するのか
ご存じの方いらっしゃいましたら教えて下さい。

Aベストアンサー

>ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
>となるのでしょうか?
>定義として見るにしてもなぜこう定義するのか

端的に言えば、
"通過するエネルギー"<"遮断されるエネルギー"
"通過するエネルギー">"遮断されるエネルギー"
が、変わる境目だからです。

>遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
これは、少々誤解を招く表現です。
減衰自体は"遮断周波数"に至る前から始まります。(-3dBに至る前に、-2dBとか、-1dBになる周波数があります)

Qボルテージフォロワの役割がよく分かりません。

ボルテージフォロワは、電流が流れることで寄生抵抗によって電圧値が低下しないようにするために、回路の入力段及び出力段に入れるものであると思いますが、
これを入れるのと入れないのでは具体的にどのような違いが表れるのでしょうか?

オペアンプを使った回路では通常、電流は流れないはずですので、このようなものは必要ないように思うのですが、どのような場合に必要になるのでしょうか?

Aベストアンサー

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗にほぼ等しい。この抵抗の大きさはさほど大きくできない。)
非反転増幅回路を用いると、入力インピーダンスを大きくすることができます(非反転増幅回路の入力インピーダンスは非反転入力と反転入力のピン間インピーダンスにほぼ等しく、かなり大きな値になる。)が、増幅率が1よりも大きくなってしまいます。
これを元の信号のレベルに下げるために抵抗で分圧してしまうと、分圧に使用した抵抗分出力インピーダンスが増えてしまいます。これでは何のためにオペアンプを入れて電流の影響を減らしたの意味がなくなってしまいます。
元の電圧のまま、次の段に受け渡すにはボルテージフォロワがよいということになります。


次に、#1の補足に対して。
>反転増幅回路と非反転増幅回路は単に反転するかしないかの違いだと思っていたのですが、
>それ以外に特性が異なるのですか?
これは、上でも述べていますが、反転増幅回路と非反転増幅回路は、増幅回路の入力インピーダンスが異なります。
信号源の出力インピーダンスが大きく、電流が流れると電圧が変化してしまような用途では入力インピーダンスを高くできる非反転増幅が有利です。

>・出力インピーダンスとは出力端子とグラウンド間のインピーダンスだと思っていたのですが、それでいくと分圧するということは
>出力インピーダンスを下げることになるのではないのでしょうか?
違います。出力インピーダンスとは信号を発生させている元と入力先との間のインピーダンスを意味します。
出力インピーダンスは信号源から流れる電流による電圧降下の大きさを決定付けます。
オペアンプを使った回路での出力インピーダンスは、理想的な状態ですはゼロになります。
分圧用の抵抗を入れてしまうと、分圧に使用した抵抗のうち信号源と入力先に入っている抵抗分が出力インピーダンスとして寄与していしまいます。

>・それと非反転増幅回路の出力を抵抗などで分圧することで増幅率を1以上にするデメリットを教えて下さい。
これは、何かの勘違いですね。
非反転増幅回路で増幅率を1よりも大きくしたいのなら分圧などする必要はありません。
非反転増幅で増幅率を1以下にしたい場合は、何らかの方法で信号を減衰させる必要があります。ここで分圧を使うのはあまり好ましいことではないということです。

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗...続きを読む

QオペアンプのGB積

オペアンプの周波数特性にてGB積を求めたいのですが、求め方がよくわかりません。
GB積=電圧利得A(倍率)×周波数f(Hz)
で求めたのですが、それぞれがばらばらの値で、一定になりません。
色々調べるとGBは一定の値をとる。となっています。

良く分かりません。よろしくお願いします。

Aベストアンサー

「×GEIN」→「○GAIN」でスペルミスです.寝ぼけていてゴメン.
お詫びに図で説明を;
図はオーディオ用のuPC4570の電圧利得対周波数特性です.
http://www.necel.com/nesdis/image/G10528JJ8V0DS00.pdf
赤線は電圧利得 Av=80dB(1万倍)のときで周波数 f≒1.3kHzとなり,GB積≒1.3*10^07.
青線は電圧利得 Av=40dB(100倍)のときで周波数 f≒120kHzとなり,GB積≒1.2*10^07.
黒線は電圧利得 Av=0dB(1倍)のときで周波数 f≒7MHzとなり,GB積≒7*10^06.
Av=0dBの周波数ゼロクロス周波数と呼び,データシートに記載があります.

とゆうように,適当な電圧利得を選び,そこから水平に線を引いて電圧利得対周波数特性との交点を求め,その時の周波数と電圧利得を掛ければGB積が算出できます.

Qオープンループゲインとクローズループゲインの関係を教えて下さい。

オープンループゲインの周波数特性は、オペアンプの種類によって決まり
クローズループゲインの周波数特性は、フィードバック抵抗、容量に決まるものですが、でも一般的にオープンループゲインの小さくなる周波数帯は使えないような話を聞きます。
ではこれらにはどういう式が成り立つのでしょうか?

どなたか教えて下さい。

Aベストアンサー

寄生容量を無視したときのオープンループゲインとクローズドループゲインの関係は参考URLの ANo.2&3 で説明されていますが、もう少し簡潔に説明してみます。

【オープンループゲインの周波数特性】
図1は、オペアンプのオープンループゲインの周波数特性を簡略化したものです。

    ln(A)
    ↑
    ├─ A = A0
    │   \
    │     \
    |       \ A = 1
    |         \
    └─┼───-┼─→ 周波数
      f1      f2 = GB積    【図1】

オープンループゲインは、周波数が低いところでは一定値 A0 ですが、ある周波数 f1 から小さくなり始めて、f2 で 1 となるような特性になります。図の縦軸は A の対数になっていることに注意してください。傾斜部分が直線になっていますが、これは周波数が10倍になると A が1/10 になるという関係を表わしています。傾斜部分ではA と周波数の積が一定になっています。この積のことを利得周波数積(GB積:Gain Bandwidth積)といいます。A*f = GB積 なので、A = 1 となる周波数がGB積になります(現実のオペアンプでは、周波数の高い領域での傾斜部分が直線からはずれ、A=1となる周波数とGB積が異なることがあります)。汎用OPアンプでは A0 = 10万(直流電圧を10万倍増幅できる)、GB積 = 1MHz 程度の値ですから、f = 10kHz のとき A = 1000、f = 100kHz のとき A = 100 程度の値になります。図1の特性を式で表わすと次のようになります。

   A = A0/{ 1 + j*f*√( A0^2 - 1 )/GB積 } --- (1)
   |A| = A0/√{ 1 + f^2*( A0^2 - 1 )/GB積^2 }

最初の式は位相特性も含めた複素利得で、2番目が利得の大きさです。f = 0 のとき A = A0、f = GB積のとき |A| = 1 になります。

【クローズドループゲインの周波数特性】

        ┏━┓                  ┌ Rf ─┐
  Vin ──┨+ ┠┬─ Vout           │┏━┓│
      ┌┨- ┃│        Vin ─ Rs ─┴┨- ┠┴─ Vout
      │┗━┛│                 ┌┨+ ┃
      ├─ Rf -┘                │┗━┛
      Rs                ────┴───── GND
     ─┴───── GND
    非反転増幅回路              反転増幅回路     【図2】

図2のように、帰還抵抗をつけて増幅器を構成したときの全体の利得(クローズドループゲイン)は次式で表わされます。

  非反転回路 Vout/Vin = 1/( β + 1/A ) --- (2)
  反転回路   Vout/Vin = - ( 1 - β )/( β + 1/A ) --- (3)
           β = Rs/( Rs + Rf )

β は帰還率と呼ばれるもので、出力端子から入力側に戻される信号の大きさの割合を表しています。式(1)を、式(2),(3)の A に代入すれば、クローズドループゲイン Vout/Vin の周波数特性になります。計算方法は省略しますが、クローズドループゲインの大きさの周波数依存は以下のようになります。

  非反転回路  |Vout/Vin| = ( 1 + Rf/Rs )/√[ { 1 + ( 1 + Rf/Rs )/A0 }^2 + { ( 1 + Rf/Rs )*f/GB積 }^2 ] --- (4)
  反転回路    |Vout/Vin| = Rf/Rs/√[ { 1 + ( 1 + Rf/Rs )/A0 }^2 + { ( 1 + Rf/Rs )*f/GB積 }^2 ]    --- (5)

図3の破線はクローズドループゲインの周波数特性ですが、これはオープンループゲインより必ず小さくなります(寄生容量を無視した場合)。

    ln(利得)
    ↑
    ├─
    │   \ ← |A| オープンループゲイン
    │     \
    ├ - - - - - \ ← |Vout/Vin| クローズドループゲイン
    |         \
    └────┼───→ 周波数
           fc             【図3】

周波数が低いときのクローズドループゲイン(破線部分)は、式(4),(5)で f = 0 としたときの値で

  非反転回路  |Vout/Vin| = ( 1 + Rf/Rs )/{ 1 + ( 1 + Rf/Rs )/A0 }
  反転回路    |Vout/Vin| = Rf/Rs/{ 1 + ( 1 + Rf/Rs )/A0 }

となります。普通は 1 >> ( 1 + Rf/Rs )/A0 なので、以下のように近似できます。

  非反転回路  |Vout/Vin| ≒ 1 + Rf/Rs
  反転回路    |Vout/Vin| ≒ Rf/Rs

これは理想オペアンプの利得の式です。

「一般的にオープンループゲインの小さくなる周波数帯は使えない」というのは、図3で、クローズドループゲイン(破線)がオープンループゲインにぶつかる周波数 fc より高い周波数領域を言います。この領域ではクローズドループゲイン=オープンループゲインとなるので、周波数に反比例して利得が低下してしまいます。

参考URL:http://sanwa.okwave.jp/qa4078817.html

寄生容量を無視したときのオープンループゲインとクローズドループゲインの関係は参考URLの ANo.2&3 で説明されていますが、もう少し簡潔に説明してみます。

【オープンループゲインの周波数特性】
図1は、オペアンプのオープンループゲインの周波数特性を簡略化したものです。

    ln(A)
    ↑
    ├─ A = A0
    │   \
    │     \
    |       \ A = 1
    |         \
    └─┼───-┼─→ 周波数
      f1      f2 = GB積 ...続きを読む

QGB積って何ですか?

GB積って何ですか?
GainとBandの積みたいですが、それで何が分かるのですか?

Aベストアンサー

増幅器の性能を比較する際の基準のひとつです。

利得(ゲインと言います)を上げる為に負荷インピーダンスを大きくするとそこに存在する浮遊容量(寄生容量)により-3dBカットオフ周波数が下がります(ポールと呼びます)。
反対に、帯域幅を広げようとすると利得を下げる必要があります。
そこで、この相反する利得(GainのG)と帯域幅(BandのB)の積をGB積と言い、その増幅器(トランジスターとかOPアンプとか、トランジスターを利用した回路とか)の性能をあらわします。

Q周波数特性の利得の低下について

トランジスタの周波数特性についてお尋ねしたいことがあります。

周波数特性は台形のような形をしているのですが、低域周波数帯と高域周波数帯で利得が低下する原因が分かりません。
初心者でも分かるように簡単に説明してくれませんか?。よろしくお願いします。

Aベストアンサー

トランジスタの増幅回路で入力や出力の結合部分にコンデンサを使うことが一般的ですがこれが原因で増幅度が小さくなる事は有ります。

つまり
信号源→コンデンサ→増幅回路入り口
と言う場合コンデンサのリアクタンスは1/ωCで計算されますがここでω=2Πfですから周波数fが下がればリアクタンスが大きくなって結合が弱まりますね。また補正のためにエミッタアース間にもコンデンサを入れる事が多いですがこれは周波数が低くなると負帰還が多くなり増幅度は下がります。

逆に周波数が非常に高くなるとベース、エミッタ、コレクタ、各電極の配線などの浮遊容量などによって増幅度を下げる方向に作用します。
殊更高くなると半導体内部の電荷の移動時間すら問題になります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング