原子、分子の持つエネルギーを各々比較説明しなければならないのですが、うまく説明してくれる文献がなかなか見つからず困っています。
 どなたかわかる方、教えていただけないでしょうか。もしくは参考になりそうな文献を教えてください。お願いします。

A 回答 (1件)

原子核のまわりに有る電子のエネルギー状態をいうのでしょうか


それなら、以下のへ
http://ccwww.kek.jp/public/class/atom/energy1.html
原子核の構造や核反応についてなら、以下へ
http://www.ph.tsukuba.ac.jp/home/enucl/iarai/Doc …
 分子中の原子同士、また分子、原子、イオンなどの粒子間には引力が働いています。分子の中の原子間には電子を介した力が働き、イオン同士の間には静電気的引力が働きます。また銅(Cu)や鉄(Fe)といった金属の間には、自由電子を介した力が働きます。また質量があるものはすべてお互いに引き合っています。このように様々な粒子にはいろいろな力が働いています。 このような解説なら以下へ
http://hiroshima.cool.ne.jp/cherun/05ketugou.html
 かなり、漠然とした質問で、原子のどういう状態のエネルギーなのか、分子の何のエネルギーなのか補足してください。
    • good
    • 0
この回答へのお礼

ありがとうございました
教えていただいたサイトでなんとか解決いたしました。
質問に足りないところがたくさんあってご迷惑をおかけしました。
また何かあったらよろしくお願いします。
そのときはもっと詳しく質問できるようにしたいと思います。

お礼日時:2001/02/20 17:48

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q気体分子運動論 2原子分子 3原子分子 なぜ振動は

こんにちは、気体の分子運動論について確認させてください。また質問をさせてください。どうぞ宜しくお願いします。

気体の運動エネルギーを考える際、
単原子分子の場合、内部エネルギーの変化 ΔU = 3/2 nRΔT
となりますが、この3の意味は単原子分子のとる自由度の数だと教わりました。
そしてその自由度とは、XYZ方向への並進運動とのことですね。

二原子分子の場合、これら3自由度の並進運動に加え、回転の自由度を加えるとのことでした。
回転は、二原子分子の線分をたとえば、z軸にそろえて載せた場合、X軸を回転軸とする回転、Y軸を回転軸とする回転の二つが加えられる。したがって、合計5の自由度があり、ΔU = 5/2 nRΔT
となる。

Q1: もうひとつZ軸を軸とした回転(つまり鉛筆を両方の掌ではさんで回すような回転)については、他の二回転に比べて運動エネルギーが小さいため考えない、と理解しているのですが、いかがでしょうか。

Q2:並進、回転運動の他にも、自由度として振動が考えられますが、なぜこれは加えないのでしょうか。

また、三原子分子の場合は、二通りあり、直線分子の場合、非直線分子の場合に分けられると知りました。ただ、三原子分子の場合の内部自由エネルギー変化についての式が与えられておらず、考えてみました。
Q3: 直線分子の場合、二原子分子と同じ考えで、並進、回転運動の自由度の合計は5となりそうですが、どうでしょうか。ただ、ここでも振動をどう扱うのか分かりません。振動の自由同は、三原子直線型分子の場合、4つあるようですが、これらの振動は考慮しなくて良いのでしょうか。

Q4: 非直線分子の場合、回転の自由度は一つ増えて合計3になるそうですが、これは、先程、二原子分子の際に考慮に入れなかった回転、Z軸を回転軸とする回転、が無視できなくなった、ということでしょうか。すると、ΔU = 6/2 nRΔT となりそうですが、いかがでしょうか。

また、しつこいようですみませんが、振動はどうなのでしょうか。非直線分子の場合、振動の自由度は3あるそうですが、このことは内部エネルギー変化を考える場合に考慮に入れる必要はないのでしょうか?

以上となるのですが、私の理解があっているかどうかも含め、是非質問に回答頂ければ幸いです。どうか宜しくお願いします。

分かり難い記述があるようでしたら、訂正いたしますゆえ、どうか重ねて宜しくお願いします。

こんにちは、気体の分子運動論について確認させてください。また質問をさせてください。どうぞ宜しくお願いします。

気体の運動エネルギーを考える際、
単原子分子の場合、内部エネルギーの変化 ΔU = 3/2 nRΔT
となりますが、この3の意味は単原子分子のとる自由度の数だと教わりました。
そしてその自由度とは、XYZ方向への並進運動とのことですね。

二原子分子の場合、これら3自由度の並進運動に加え、回転の自由度を加えるとのことでした。
回転は、二原子分子の線分をたとえば、z軸にそろえて載せた場合、X軸...続きを読む

Aベストアンサー

>振動は含めないと言うことは、考慮すべきは並進運動と回転運動ですが、並進運動
>は常にXYZの三つ、回転については直線型分子だと2、屈曲した分子ならば3と、「常
>に」考えてもよいでしょうか。
>
>『Q4:これも、ご推察のとおりです。3個以上の原子からなる"剛体"としての
>分子の場合、古典物理学的には自由度は最大6なのですね。』
>ということは、この考えは正しいかと存じますが、いかがでしょうか。
>例えば、4原子分子の場合でも、直線ならば回転は2、屈曲ならば3でしょうか。
>
>複雑な形をした分子、例えば、人間のように四肢があるような形をした分子の場合、
>右手だけの回転、左足だけの回転、など複雑な回転機構が考えられそうですが、剛
>体と考えるならば、このような回転の自由度は考慮しなくてよさそうですが、いか
>がでしょうか。

 はい、そのとおりです。
 3原子分子以上の多原子分子でも、直線状の分子なら、回転の自由度は2、それ以外の形状なら回転の自由度は3となります。どんなに複雑な形状を持つ分子の場合でも、剛体なら、回転の自由度は2または3となります。これは、次のように説明されます。
 多数の粒子が、互いの相対的な位置関係を崩さないで、まとまり(粒子系)を作っているとします。つまり"剛体"を、極く小さな構成粒子の集団と見なしてしまおうということですね。
 任意の座標系を用意して、粒子系の全ての粒子の座標を確定するには、何種類の情報が必要なのかを数え上げたのが、自由度と呼ばれる数値です。
 そのうち、特に、粒子系の中の任意の1つ(Pとしましょう)に固定した座標系(Pは座標の原点に在るものとします)を考え、物体系が任意の回転をしたとき、他のすべての粒子(Qi)の位置を表そうとすれば一体いくつの情報量が有れば済むのかを数え上げたものを、回転の自由度と呼ぶのです。剛体の回転を考える時には、粒子間の相対的な位置が確定しています(互いの相対的な距離は変わりません)から、必要な情報は、Qiが、Pから見て、x軸周りにθ、y軸周りにφ、z軸周りにδ回転した、という情報だけです。
 たとえば、地球から見ると、各星座は一斉に同じ方向に日周・年周運動しているように見えます。これは、地球と星座を作っている恒星とが、相対的な位置関係を保ったままになっているので、或る天体(地球)から見て、任意の恒星(ペテルギウス)の回転さえ知ることができれば、他の任意の恒星位置が確定されるのと同じことです。
 つまり、θ,φ,δの3つの情報を知ることができれば、全てのQiの、Pに対する相対的な位置を確定できるわけです。このことを、回転の自由度が3であるというのです。
 ただし、物質系の粒子の位置関係によっては、θ,φ,δのどれかが何°であっても位置関係確定には影響しないこともあります。たとえば、x軸上に全ての粒子が配置されているとき、x軸周りの回転角度θがいくつかという情報は価値がありません。無意味ですね。このような場合は、回転の自由度がθの分だけ、1つ減ることになります。しかし、多粒子系なら、2方向の軸周りの回転情報が同時に無意味になることはありえません(x軸上とy軸上の2つの軸方向にすべての粒子が並ぶというようなことはあり得ません)から、剛体の回転の自由度は最低でも2、最大でも3なのです。

>振動は含めないと言うことは、考慮すべきは並進運動と回転運動ですが、並進運動
>は常にXYZの三つ、回転については直線型分子だと2、屈曲した分子ならば3と、「常
>に」考えてもよいでしょうか。
>
>『Q4:これも、ご推察のとおりです。3個以上の原子からなる"剛体"としての
>分子の場合、古典物理学的には自由度は最大6なのですね。』
>ということは、この考えは正しいかと存じますが、いかがでしょうか。
>例えば、4原子分子の場合でも、直線ならば回転は2、屈曲ならば3でしょうか。
>
>複雑な形をした分...続きを読む

Q単原子分子で比熱比γが5/3の気体Aと2原子分子で

単原子分子で比熱比γが5/3の気体Aと2原子分子で比熱比が7/5の気体Bがある。
最初、圧力、体積、温度が等しい状態から断熱圧縮で体積を最初の体積の1/2にした。
このときAとBの気体について、気体がした仕事の比、最後の状態の圧力の比、温度の比を求めよ。

仕事の比は1.10、圧力の比は1.20、温度の比は1.20になるそうなんですが、わかりません。

計算の過程を教えてください。
おねがいします。

Aベストアンサー

断熱変化では
 P・V^γ=一定
という関係が成り立っています。

出発時の圧力をP,体積をV,絶対温度をTとします。
体積が(V/2)になった時の圧力をP',絶対温度をT'とします。

P・V^γ=P'・(V/2)^γ
ですから
P'/P=((V/2)^γ)/(V^γ)=2^γ
∴求める圧力比は 2^(γ-γ')=2^(5/3-7/5)=1.20

状態方程式が成り立つとして
PV=nRT
P'・(V/2)=nRT'
P'=P・2^γ でしたから
nRT'=(P・2^γ)・(V/2)=PV・2^(γ-1)=2^(γ-1)・nRT
∴T'/T=2^(γ-1)
∴求める絶対温度の比は 2^((γ-1)-(γ'-1))=2^(γ-γ')=1.20

断熱変化の場合、仕事は、p・dVから計算するのではなく、熱力学第1法則から求めた方がスッキリします。

断熱変化なので、外部から出入りした熱量Q=0ですから、ΔU-W=Q
気体がされた仕事Wは、 W=ΔU と評価できます。
気体がした仕事なら -Wですが、今問題にしている仕事の比率では、した仕事で評価しても、された仕事で評価しても同じ結果になりますから、どちらで計算しても構わないはずです。

ΔU=nCv・ΔT
です。
T'/T=2^(γ-1) でしたから ΔT=T'-T=(2^(γ-1)-1)・T です。
一方、 Cp-Cv=R , γ=Cp/Cv でしたから
Cv=R(γ-1)なので Aでは Cv=3/2, Bでは Cv=5/2 であることがわかります。

∴求める仕事の比は
 {n・Cv・(2^(γ-1)-1)T}/{n・Cv'・(2^(γ'-1)-1)T}
= {(γ-1)・(2^(γ-1)-1)}/{(γ'-1)・(2^(γ'-1)-1)}
=1.10

断熱変化では
 P・V^γ=一定
という関係が成り立っています。

出発時の圧力をP,体積をV,絶対温度をTとします。
体積が(V/2)になった時の圧力をP',絶対温度をT'とします。

P・V^γ=P'・(V/2)^γ
ですから
P'/P=((V/2)^γ)/(V^γ)=2^γ
∴求める圧力比は 2^(γ-γ')=2^(5/3-7/5)=1.20

状態方程式が成り立つとして
PV=nRT
P'・(V/2)=nRT'
P'=P・2^γ でしたから
nRT'=(P・2^γ)・(V/2)=PV・2^(γ-1)=2^(γ-1)・nRT
∴T'/T=2^(γ-1)
∴求める絶対温度の比は 2^((γ-1)-(γ'...続きを読む

Q顕微鏡で見える原子もしくは分子は

走査トンネル顕微鏡やら電子顕微鏡やらよく分かりませんが、原子や分子が見える顕微鏡があると思います。

「見える」という行為は不確定性原理には反しないのでしょうか?

実は見えにくいが不確定性原理に反しない程度にブルブル震えているのでしょうか?

回答よろしくお願いします。

Aベストアンサー

人が見えるとは、目で確認できることです。

顕微鏡は、肉眼で見えない(見えにくい)物を、拡大して(モニターや写真などにより)見えるようにする装置です。

拡大する原理は、顕微鏡により異なり、同じ試料でも、見え方は異なります。

STMでは、原子の周りの電子の状態(状態密度)、概念的には電子雲の状態(表面の電子雲の並び)を観察しています。原子核から0.1nm程度離れた軌道状で運動している電子は、原子間距離に近い距離なので、ドーム状の連なりとして、像が確認されます。原子は振動していますが、固体であれば、わずかな距離で、しかも測定に対して高速に振動しているため、平均的な電子状態として、STMでは観察されます。
キセノン分子の観察は、極低温にして分子が動きにくくして測定しています。

透過型の電子顕微鏡では、電子が通過しやすい所と、通過しにくい所を、影絵として拡大して映し出します。原子核近傍は、電子が真っ直ぐ通過できないので、影ができます。一般的には整然と配列した原子の重なりが、電子の進む方向とそろった時に、きれいな配列が観察されます。この場合も、原子は振動していますが、固体であれば、わずかな距離で、しかも測定に対して高速に振動しているため、平均的な原子の位置を示します。

人が見えるとは、目で確認できることです。

顕微鏡は、肉眼で見えない(見えにくい)物を、拡大して(モニターや写真などにより)見えるようにする装置です。

拡大する原理は、顕微鏡により異なり、同じ試料でも、見え方は異なります。

STMでは、原子の周りの電子の状態(状態密度)、概念的には電子雲の状態(表面の電子雲の並び)を観察しています。原子核から0.1nm程度離れた軌道状で運動している電子は、原子間距離に近い距離なので、ドーム状の連なりとして、像が確認されます。原子は振動してい...続きを読む

Q2原子、3原子分子の自由度について

2原子、3原子分子に対して回転運動・振動運動のそれぞれの自由度はいくらになりますか?
調べれば調べるほど、
2原子分子については回転3振動0だったり、回転2振動1だったりします。3原子分子でも回転3振動3だったり、回転2振動4だったりします。
正しい答えが知りたいので説明お願いします。(>_<)

Aベストアンサー

1つの原子はx、y、zの3方向に動けるから自由度3を持ちます(斜めはこれらの組み合わせで表される)。
原子が2つになると、動きとしては3×3=9とか、±を考えてもっとたくさんありそうに思えますが、実際に意味のあるものはx1に対して±x2、y1に対してy2±、z1に対して±z2の6つです。
他の動きはこれらの組み合わせで表せます。
一般的に、N個の原子の自由度の合計は3Nになります。
N原子分子はN個の原子の集まりなので、自由度は3Nです。

そのうち、すべての原子、つまり分子全体がx、y、zの3方向のうちいずれかの方向に一斉に動く運動というものが考えられますが、これは並進運動と呼ばれるものです。
分子によって特定の方向の並進運動ができないということはありません。
したがって、どんな分子でも並進運動の自由度は3になります。

次に、原子の動き方によっては、分子全体が回転するようなことが考えられます。
回転の方向としては、xy平面(z軸中心の回転)、yz平面(x軸中心の回転)、zx平面(y軸中心の回転)の3種類が考えられます。
ただし、直線分子に関しては注意が必要で、分子の軸を中心とした回転は、原子の位置が全く変化していないので、動いていないのと同じということになります。
そういうわけで、回転の自由度は3(直線分子では2)ということになります。

残りはすべて振動の自由度になるため、振動の自由度は3N-6(直線分子では3N-5)となります。

したがって、回答としては、
2原子分子(必ず直線)では 回転2振動1
3原子分子では 回転3振動3(非直線分子)または回転2振動4(直線分子)
となります。

1つの原子はx、y、zの3方向に動けるから自由度3を持ちます(斜めはこれらの組み合わせで表される)。
原子が2つになると、動きとしては3×3=9とか、±を考えてもっとたくさんありそうに思えますが、実際に意味のあるものはx1に対して±x2、y1に対してy2±、z1に対して±z2の6つです。
他の動きはこれらの組み合わせで表せます。
一般的に、N個の原子の自由度の合計は3Nになります。
N原子分子はN個の原子の集まりなので、自由度は3Nです。

そのうち、すべての原子、つまり分子全体がx、y、zの...続きを読む

Q高校の原子分野についての質問です。 原子核反応において、原子核同士を衝突させたときと原子核に中性子等

高校の原子分野についての質問です。

原子核反応において、原子核同士を衝突させたときと原子核に中性子等の粒子をぶつけたときの反応は違うものなのでしょうか??

教えてください

Aベストアンサー

No.4です。ちょっと用語の使い方が適切ではなかったかもしれません。
鉄より軽い元素が「核融合」で作られると書きましたが、鉄より重い元素も「核融合」で作られます。
その意味で「鉄より軽い元素は、発熱反応の核融合」で作られ、「鉄より重い元素は、吸熱反応の核融合」で作られる、と書くべきなのでしょう。

学問的に正確に書くとどうなるのか、ちょっと自信がありません。とりあえずイメージ的な話として書きました。
「正確」に知りたければ、その筋の「書籍」なりを読んでください。


人気Q&Aランキング

おすすめ情報