人に聞けない痔の悩み、これでスッキリ >>

http://ja.wikipedia.org/wiki/%E5%86%86%E5%91%A8% …
によると、
π:=∫[-1,1]1/√(1-x^2) dx

π:=2∫[-1,1]√(1-x^2) dx

π:=∫[-∞,∞]1/(1+x^2) dx

ということですが、

∫[-1,1]1/√(1-x^2) dx
=2∫[-1,1]√(1-x^2) dx
=∫[-∞,∞]1/(1+x^2) dx

ということを三角関数を使わずに示すにはどうしたらよいのでしょうか?
三角関数を使わずに、という理由は、
arcsin(x)=∫[0,x]1/√(1-x^2) dx
というのが三角関数の定義として考えたいからです。

このQ&Aに関連する最新のQ&A

三角関数」に関するQ&A: 三角関数

A 回答 (1件)

∫[-1,1]√(1-x^2) dx


=[x√(1-x^2)][-1,1]+∫[-1,1]x^2/√(1-x^2) dx
=-∫[-1,1]√(1-x^2) dx+∫[-1,1]1/√(1-x^2) dx

2∫[-1,1]√(1-x^2) dx
=∫[-1,1]1/√(1-x^2) dx

この回答への補足

∫[-1,1]1/√(1-x^2) dx=∫[-∞,∞]1/(1+y^2)dyを証明する。

y=x/√(1-x^2)とおく。
x=-1の時y→-∞、x=1の時y→∞

x=y√(1-x^2)から
dx/dy=√(1-x^2)+y(dx/dy){-x/√(1-x^2)}
(dx/dy){1+xy/√(1-x^2)}=√(1-x^2)
(dx/dy)(1+y^2)=√(1-x^2)

従って、
∫[-1,1]{1/√(1-x^2)}dx=∫[-∞,∞]{1/(1+y^2)}dy

補足日時:2008/09/16 09:58
    • good
    • 0
この回答へのお礼

すばらしい回答に感謝です。

∫[-1,1]1/√(1-x^2) dx
=2∫[-1,1]√(1-x^2) dx
=∫[-∞,∞]1/(1+x^2) dx

の後半もどなたかお願いいたします。

お礼日時:2008/08/21 13:43

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q積分∫[0→1]√(1-x^2)dx=π/4

定積分∫[0→1]√(1-x^2)dx=π/4
この計算の仕方が分かりません。
x=sinθとおく。dx=cosθdθ。x[0→1]がθ[0→2/π]になる。
∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?
次に半角の公式を使って(この半角の公式とやらがよく分からないのですが)1/2∫[0→2/π]1+cos2θdθとなり
=π/4となる様です。計算の説明を分かりやすくお願い致します。
また、π/4 は 45°で、cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、それとの関係はどうなるのでしょう?

Aベストアンサー

∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?

正しくは 1 → π/2 です (πと2が逆)

さらに、dx=cosθdθ の cos θ を入れ忘れています

以上を訂正すると

∫[0→π/2]√(cos^2θ) cos θ dθ
= ∫[0→π/2] cos^2 θ dθ

となります

cos^2 θ を積分するの面倒です

しかし、半角の公式

cos(θ/2)=±√{(1 + cosθ)/2}

を用いると、、、、

同じ θ を使ってるので、頭 こんがらがりますが

cos(θ)=±√{(1 + cos 2θ)/2}

cos^2 θ = (1 + cos 2θ)/2

で2乗を外せて、積分しやすい形になります

(1/2)∫[0→π/2](1+cos2θ)dθ

=(1/2) [ θ + (1/2) sin 2θ] (0→π/2)

= (1/2){(π/2 + sin π)ー(0 + sin 0)}
= (1/2)(π/2 )
=π/4

> また、π/4 は 45°で、
> cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、
> それとの関係はどうなるのでしょう?

上記の積分の π/4  は面積
π/4 は 45°という時の π/4  は角度
ですので、関係は深く考えても仕方ありません

∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ
ここまでは合ってますか?

正しくは 1 → π/2 です (πと2が逆)

さらに、dx=cosθdθ の cos θ を入れ忘れています

以上を訂正すると

∫[0→π/2]√(cos^2θ) cos θ dθ
= ∫[0→π/2] cos^2 θ dθ

となります

cos^2 θ を積分するの面倒です

しかし、半角の公式

cos(θ/2)=±√{(1 + cosθ)/2}

を用いると、、、、

同じ θ を使ってるので、頭 こんがらがりますが

cos(θ)=±√{(1 + cos 2θ)/2}

cos^2 θ = (1 + cos 2θ)/2

で2乗を外せて、積分しやすい形に...続きを読む


人気Q&Aランキング